Skip to main content
Log in

Primary ex vivo culture of keratinocytes isolated from hypertrophic scars as a means of biochemical characterization of CD36

  • Original
  • Published:
International Journal of Clinical and Laboratory Research

Abstract

The CD36 antigen is a molecule which is ectopically expressed on epidermal keratinocytes of hypertrophic scars and is a good candidate for a marker for a broad range of skin pathologies. Most marker studies have been performed using immunohistochemical techniques on fixed skin sections. Our aim was to investigate the biochemical features of the CD36 expressed in pathological keratinocytes and to find an in vitro model for the study of the regulation of its expression. Here we show how keratinocytes isolated from hypertrophic scars can be cultivated in vitro and employed as a model for the study of these cells. We demonstrated that the antigenic features of the CD36 expressed on keratinocytes of hypertrophic scars are identical to those described for the CD36 expressed by other cell types. The molecule was expressed on the surface of keratinocytes which were non-adherent in vitro. Adherent and proliferating keratinocytes, as well as normal keratinocytes, were CD36 negative both at the surface and intracellularly. The in vitro proliferating cells from hypertrophic scars, but not the normal keratinocytes, showed intracellular expression of CD36 after long-term culture and cell stratification, suggesting a regulated expression of CD36 in pathological keratinocyte differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castagnoli C, Stella M, Berthod C, Magliacani G, Momigliano Richiardi P. TNF production in hypertrophic scarring. Cell Immunol 1993; 147: 51.

    Article  PubMed  CAS  Google Scholar 

  2. Prinz JC, Grob B, Vollmer S, Trommler P, Strobel I, Meurer M, Plewig G. T cell clones from psoriasis skin lesions can promote keratinocyte proliferation in vitro via secreted products. Eur J Immunol 1994; 24: 593.

    Article  PubMed  CAS  Google Scholar 

  3. Janssen de Limpens AMP, Cormane RH. Studies on the immunologic aspects of keloid and hypertrophic scars. Arch Dermatol Res 1982; 274: 259.

    Article  PubMed  CAS  Google Scholar 

  4. Castagnoli C, Stella M, Magliacani G, Ferrone S, Momigliano Richiardi P. Similar ectopic expression of ICAM-1 and HLA class II molecules in hypertrophic scars following thermal injury. Burns 1994; 20: 430.

    Article  PubMed  CAS  Google Scholar 

  5. Lisby S, Ralfkiaer E, Hansen ER, Vejlsgaard GL. Keratinocyte and epidermal leukocyte expression of CD36 (OKM5) in benign and malignant skin diseases. Acta Derm Venereol 1990; 70: 18.

    PubMed  CAS  Google Scholar 

  6. Barker JNWN, Markey AC, Allen MH, MacDonald DM. Keratinocyte expression of OKM5 antigen in inflammatory cutaneous disease. Br J Dermatol 1989; 20: 613.

    Article  Google Scholar 

  7. Viac J, Chardonnet Y. Immunocompetent cells and epithelial cell modifications in molluscum contagiosum. J Cutan Pathol 1990; 17: 202.

    Article  PubMed  CAS  Google Scholar 

  8. Soyer HP, Smolle J, Kerl H. Distribution patterns of the OKM5 antigen in normal and diseased human epidermis. J Cutan Pathol 1989; 16: 60.

    Article  PubMed  CAS  Google Scholar 

  9. Begany A, Simon M Jr, Dehmel N, Hunyadi J. Expression of thrombospondin-1 (TSP1) and its receptor (CD36) in healthy and diseased human skin. Acta Derm Venereol 1994; 74: 269.

    PubMed  CAS  Google Scholar 

  10. Coleman N, Stanley M. Expression of the myelomonocytic antigens CD36 and L1 by keratinocytes in squamous intraepithelial lesion of the cervix. Hum Pathol 1994; 25: 73.

    Article  PubMed  CAS  Google Scholar 

  11. Willis CM, Stephens CJM, Wilkinson JD. Selective expression of immune-associated surface antigens by keratinocytes in irritant contact dermatitis. J Invest Dermatol 1991; 96: 505.

    Article  PubMed  CAS  Google Scholar 

  12. Greenwalt DE, Lipsky RH, Ockenhouse CE, Ikeda H, Tandon NN, Jamieson GA. Membrane glycoprotein CD36: a review of its roles in adherence, signal transduction and transfusion medicine. Blood 1992; 80: 1105.

    PubMed  CAS  Google Scholar 

  13. Savill J, Hogg N, Ren Y, Haslett C. Thrombospondin cooperates with CD36 and vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J Clin Invest 1992; 90: 1513.

    Article  PubMed  CAS  Google Scholar 

  14. Akbar AN, Savill J, Gombert W, Bofill M, Borthwick NJ, Whitelaw F, Grundy JE, Janossy G, Salmon M. The specific recognition by macrophages of CD8+, CD45RO+ T cells undergoing apoptosis: a mechanism for T cell clearance during resolution of viral infections. J Exp Med 1994; 180: 1943.

    Article  PubMed  CAS  Google Scholar 

  15. Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA. CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem 1993; 268: 11 811.

    CAS  Google Scholar 

  16. Ibrahimi A, Sfeir Z, Magharaie H, Amri E-Z, Grimaldi P, Abumrad NA. Expression of CD36 homolog (FAT) in fibroblast cells: effects on fatty acid transport. Proc Natl Acad Sci USA 1996; 93: 2646.

    Article  PubMed  CAS  Google Scholar 

  17. Alessio M, Greco NJ, Primo L, Ghigo D, Bosia A, Tandon NN, Ockenhouse CF, Jamieson GA, Malavasi F. Platelet activation and inhibition of malarial cytoadherence by the anti-CD36 IgM monoclonal antibody NL07. Blood 1993; 82: 3637.

    PubMed  CAS  Google Scholar 

  18. Ockenhouse CF, Magowan C, Chulay JD. Activation of monocytes and platelets by monoclonal antibodies or malaria-infected erythrocytes binding to the CD36 surface receptor in vitro. J Clin Invest 1989; 84: 468.

    Article  PubMed  CAS  Google Scholar 

  19. Trezzini C, Jungi TW, Spycher MO, Maly FE, Rao P. Human monocyte CD36 and CD16 are signaling molecules. Evidence from studies using antibody-induced chemiluminescence as a tool to probe signal transduction. Immunology 1990; 71: 29.

    PubMed  CAS  Google Scholar 

  20. Huang M-M, Bolen JB, Barnwell JW, Shattil SJ, Brugge J. Membrane glycoprotein IV (CD36) is physically associated with thefyn, lyn andyes protein-tyrosine kinases in human platelets. Proc Natl Acad Sci USA 1991; 88: 7844.

    Article  PubMed  CAS  Google Scholar 

  21. Bull HA, Brickell PM, Dowd PM.src-related protein tyrosine kinases are physically associated with the surface antigen CD36 in human dermal microvascular endothelial cells FEBS Lett 1994; 351: 41.

    Article  PubMed  CAS  Google Scholar 

  22. Castagnoli C, Stella M, Menegatti E, Trombotto C, Calcagni M, Teich Alasia S, Alessio M. CD36 is one of the immunological markers expressed by keratinocyte in active hypertrophic scars. Ann Burns Fire Disaster 1996; 7: 214.

    Google Scholar 

  23. Alessio M, Ghigo D, Garbarino G, Geuna M, Malavasi F. Analysis of the human CD36 leucocyte differentiation antigen by means of the monoclonal antibody. NL07. Cell Immunol 1991; 137: 487.

    Article  CAS  Google Scholar 

  24. Tandon NN, Lipsky RH, Burgess WH, Jamieson GA. Isolation and characterization of platelet glycoprotein IV (CD36). J Biol Chem 1989; 264: 7570.

    PubMed  CAS  Google Scholar 

  25. Grassi F, Meneveri R, Gullberg M, Lopalco L, Rossi GB, Lanza P, De Santis C, Brattsand G, Butto’ S, Ginelli E, Beretta A, Siccardi AG. Human immunodeficiency virus type 1 gp 120 mimics a hidden monomorphic epitope borne by class I major histocompatibility complex heavy chains. J Exp Med 1991; 174: 53.

    Article  PubMed  CAS  Google Scholar 

  26. Corte G, Calabi F, Damiani G, Bargellesi A, Tosi R, Sorrentino R. Human Ia molecules carrying DC1 determinants differ in bothα-andβ-subunits from Ia molecules carrying DR determinants. Nature 1981; 292: 357.

    Article  PubMed  CAS  Google Scholar 

  27. Oquendo P, Hundt E, Lawler J, Seed B. CD36 directly mediates cytoadherence ofPlasmodium falciparum infected erythrocytes. Cell 1989; 58: 95.

    Article  PubMed  CAS  Google Scholar 

  28. Greenwalt D, Watt KWK, So OY, Jiwani N. PASIV, an integral membrane protein of mammary epithelial cells, is related to platelet and endothelial CD36 (GPIV). Biochemistry 1990; 29: 7054.

    Article  PubMed  CAS  Google Scholar 

  29. Alessio M, De Monte L, Scirea A, Gruarin P, Tandon NN, Sitia R. Synthesis, processing and intracellular transport of CD36 during monocytic differentiation. J Biol Chem 1996; 271: 1770.

    Article  PubMed  CAS  Google Scholar 

  30. Nickoloff BJ, Turka LA. Immunological functions of non-professional antigen-presenting cells: new insights from studies of T-cell interactions with keratinocytes. Immunol Today 1994; 15: 464.

    Article  PubMed  CAS  Google Scholar 

  31. Acton SL, Scherer PE, Lodish HF, Krieger M. Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J Biol Chem 1994; 269: 21 005.

    Google Scholar 

  32. Pearson AM. Scavenger receptors in innate immunity. Curr Opin Immunol 1996; 8: 20.

    Article  PubMed  CAS  Google Scholar 

  33. Rouabhia M, Jobin N, Doucet R, Bergeron J, Auger FA. CD36+-dendritic epidermal cells: a putative actor in the cutaneous immune system. Cell Transplant 1994; 3: 529.

    PubMed  CAS  Google Scholar 

  34. Lisby S, Baadsgaard O, Cooper KD, Hansen ER, Mehregan D, Thomsen K, Vejlsgaard GL. Phenotype, ultrastructure, and function of CD1+DR+ epidermal cells that express CD36 (OKM5) in cutaneous T-cell lymphoma. Scand J Immunol 1990; 32: 111.

    Article  PubMed  CAS  Google Scholar 

  35. Taylor RS, Baadsgaard O, Hammerberg C, Cooper KD. Hyperstimulatory CD1a+ CD1b+ Langerhans cells are responsible for increased autologous T lymphocyte reactivity to lesional epidermal cells of patients with atopic dermatitis. J Immunol 1991; 147: 3794.

    PubMed  CAS  Google Scholar 

  36. Viac J, Soler C, Chardonnet Y, Euvrard S, Schmitt D. Expression of immune associated surface antigens of keratinocytes in human papillomavirus-derived lesions. Immunobiology 1993; 188: 392.

    PubMed  CAS  Google Scholar 

  37. Ren Y, Silverstain RL, Allen J, Savill J. CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis. J Exp Med 1995; 181: 1857.

    Article  PubMed  CAS  Google Scholar 

  38. Ryeom SW, Sparrow JR, Silverstain RL. CD36 participates in the phagocytosis of rod outer segments by retinal pigment epithelium. J Cell Sci 1996; 109: 387.

    PubMed  CAS  Google Scholar 

  39. Franc NC, Dimarcq JL, Lagueux M, Hoffman J, Ezekowitz RAB. Croquemort, a novelDrosophila hemocyte/macrophages receptor that recognizes apoptotic cells. Immunity 1996; 4: 431.

    Article  PubMed  CAS  Google Scholar 

  40. Simon M, Juhasz I, Herlyn M, Hunyadi J. Thrombospondin receptor (CD36) expression of human keratinocytes during wound healing in a SCID mouse/human skin repair model. J Dermatol 1996; 23: 305.

    PubMed  CAS  Google Scholar 

  41. Huh HY, Lo SK, Yesner LM, Silverstain RL. CD36 induction on human monocytes upon adhesion to tumor necrosis factor-activated endothelial cells. J Biol Chem 1995; 270: 6267.

    Article  PubMed  CAS  Google Scholar 

  42. Huh HY, Pearce SF, Yesner LM, Schindler JL, Silverstein RL. Regulated expression of CD36 during monocyte to macrophage differentiation: potential role of CD36 in foam cell formation. Blood 1996; 87: 2020.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alessio, M., Gruarin, P., Castagnoli, C. et al. Primary ex vivo culture of keratinocytes isolated from hypertrophic scars as a means of biochemical characterization of CD36. Int J Clin Lab Res 28, 47–54 (1998). https://doi.org/10.1007/s005990050017

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s005990050017

Key words

Navigation