Skip to main content

Advertisement

Log in

Metabolic alteration in patients with cancer: Nutritional implications

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

During the past 20 years, efforts have been made to elucidate the metabolic changes observed in patients with cancer by using stable and radioactive isotopic tracers. These metabolic changes in patients with cancer may be similar to those in other stress conditions, in which glucose production and utilization, lipolysis and free fatty acid flux, and net protein catabolism are increased. Stress hormones, such as glucagon and catecholamines, and certain cytokines may be responsible for these metabolic changes. Although it has been shown that cachexia in patients with cancer signals a poor prognosis, efforts to improve the clinical outcomes with nutritional support have been disappointing. The failure of cancer patients to respond to nutritional support may be related to an alteration in the intermediate metabolism. Therefore, further research evaluating the metabolic abnormalities associated with cancer may lead to more effective nutritional therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeWys WD, Begg C, Lavin PT (1980) Prognostic effect of weight loss prior to chemotherapy in cancer patients. Am J Med 69:491–497

    Article  PubMed  CAS  Google Scholar 

  2. Lanzotti VJ, Thomas DR, Boyle LE, Smith TL, Gehan EA, Samuels ML (1977) Survival with inoperable lung cancer. Cancer 39:303–313

    Article  PubMed  CAS  Google Scholar 

  3. Costa G, Bewley P, Aragon M, Siebold M (1981) Anorexia and weight loss in cancer patients. Cancer Treatm Rep 65 (Suppl 5):3–7

    Google Scholar 

  4. Warnold I, Lundholm K, Scherstén T (1978) Energy balance and body composition in cancer patients. Cancer Res 38:1801–1807

    PubMed  CAS  Google Scholar 

  5. Heber D, Byerley LO, Chi J (1986) Pathophysiology of malnutrition in the adult cancer patients. Cancer 58:1867–1873

    Article  PubMed  CAS  Google Scholar 

  6. Knox LS, Crosby LO, Feurer ID, Buzby GP, Miller CL, Mullin JL (1983) Energy expenditure in malnourished cancer patients. Ann Surg 197:152–162

    Article  PubMed  CAS  Google Scholar 

  7. Dempsy DT, Feurer ID, Knox LS, Crosby LO, Buzby GP, Mullin JL (1984) Energy expenditure in malnourished gastrointestinal patients. Cancer 53:1265–1273

    Article  Google Scholar 

  8. Lindmark L, Bennegård K, Edén E, Ekman L, Scherstén T, Svninger G, Lundholm K (1984) Resting energy expenditure in malnourished patients with and without cancer. Gastroenterology 87:402–408

    PubMed  CAS  Google Scholar 

  9. Macfie J, Burkinshaw L, Oxby C, Holmfield JHM, Hill GL (1982) The effect of gastrointestinal malignancy on resting metabolic expenditure. Br J Surg 69:443–446

    Article  PubMed  CAS  Google Scholar 

  10. Luketich JD, Mullin JL, Feurer ID, Sternlieb J, Fried RC (1990) Albation of abnormal energy expenditure by curative tumor resection. Arch Surg 125:337–341

    PubMed  CAS  Google Scholar 

  11. Hansell DT, Davies JWL, Burns HJG (1986) The relationship between resting energy expenditure and weight loss in benign and malignant disease. Ann Surg 203:240–245

    Article  PubMed  CAS  Google Scholar 

  12. Holroyde CP, Gabuzda TG, Putnam RC, Paul P, Reichard GA (1975) Altered glucose metabolism in metastatic carcinoma. Cancer Res 35:3710–3714

    PubMed  CAS  Google Scholar 

  13. Kokal WA, McCulloch A, Wright PD, Johnston IDA (1983) Glucose turnover and recycling in colorectal carcinoma. Ann Surg 198:601–604

    Article  PubMed  CAS  Google Scholar 

  14. Noguchi Y, Vydelingum NA, Brennan MF (1989) The reversal of inreased gluconeogenesis in the tumor-bearing rat by tumor removal and food intake. Surgery 106:423–430

    PubMed  CAS  Google Scholar 

  15. Saccà L, Sherwin R, Felig P (1978) Effect of sequential infusions of glucagon and epinephrine on glucose turnover in the dog. Am J Physiol 235:E287-E290

    PubMed  Google Scholar 

  16. Miyoshi H, Shulman GI, Peters EJ, Wolfe MH, Elahi D, Wolfe RR (1988) Hormonal control of substrate cycling in humans. J Clin Invest 81:1545–1555

    Article  PubMed  CAS  Google Scholar 

  17. Jahoor F, Herndon DN, Wolfe RR (1986) Role of insulin and glucagon in the response of glucose and alanine kinetics in burn-injured patients. J Clin Invest 78:807–814

    Article  PubMed  CAS  Google Scholar 

  18. Wolfe RR, Shaw JHF (1985) Glucose and FFA kinetics in sepsis: role of glucagon and sympathetic nervous system activity. Am J Physiol 248:E236-E243

    PubMed  CAS  Google Scholar 

  19. Sakurai Y, Zhang X, Wolfe RR (1993) Short-term effects of tumor necrosis factor on substrate and energy metabolism in dogs. J Clin Invest 91:2437–2445

    Article  PubMed  CAS  Google Scholar 

  20. Sakurai Y, Zhang X, Wolfe RR (1994) Effect of tumor necrosis factor on substrate and amino acid kinetics in conscious dogs. Am J Physiol 266:E936-E945

    PubMed  CAS  Google Scholar 

  21. Sakurai Y, Zhang X, Wolfe RR (1996) TNF directly stimulates glucose uptake and leucine oxidation and inhibits FFA flux in conscious dogs. Am J Physiol 270:E864-E872

    PubMed  CAS  Google Scholar 

  22. Warburg O (1930) The metabolism of tumours. Constable, London

    Google Scholar 

  23. Waterhouse C, Kemperman JH (1971) Carbohydrate metabolism in subject with cancer. Cancer Res 31:1273–1278

    PubMed  CAS  Google Scholar 

  24. Holroyde CP, Myers RN, Smink RD, Paul P, Reichard GA (1977) Metabolic response to total parenteral nutrition in cancer patients. Cancer Res 37:3109–3114

    PubMed  CAS  Google Scholar 

  25. Burt ME, Aoki TT, Gorschboth CM, Brennan MF (1983) Peripheral tissue metabolism in cancer-bearing man. Ann Surg 198:685–691

    Article  PubMed  CAS  Google Scholar 

  26. Shaw JH, Wolfe RR (1987) Glucose and urea kinetics in patients with early and advanced gastrointestinal cancer: the response to glucose infusion, parenteral feeding, and surgical resection. Surgery 101:181–191

    PubMed  CAS  Google Scholar 

  27. Lundholm K, Bylund A-C, Holm J, Scherstén T (1976) Skeletal muscle metabolism in patients with malignant tumor. Eur J Cancer 12:465–473

    PubMed  CAS  Google Scholar 

  28. Heber D, Chlebowski RT, Ishibashi DE, Herrold JN, Block JB (1982) Abnormalities in glucose and protein metabolism in noncachectic lung cancer patients. Cancer Res 42:4815–4819

    PubMed  CAS  Google Scholar 

  29. Kien CL, Camitta BM (1983) Increased whole-body protein turnover in sick children with newly diagnosed leukemia or lymphoma. Cancer Res 43:5586–5592

    PubMed  CAS  Google Scholar 

  30. Edén E, Ekman L, Bennegård K, Lindmark L, Lundholm K (1984) Whole-body tyrosine flux in relation to energy expenditure in weight-losing cancer patients. Metabolism 33:1020–1027

    Article  PubMed  Google Scholar 

  31. Burt ME, Stein TP, Schwade JG, Brennan MF (1984) Wholebody protein metabolism in cancer-bearing patients. Cancer 53:1246–1252

    Article  PubMed  CAS  Google Scholar 

  32. Inculet RI, Stein TP, Peacock JL, Leskiw M, Maher M, Gorschboth CM, Norton JA (1987) Altered leucine metabolism in noncachectic sarcoma patients. Cancer Res 47:4746–4749

    PubMed  CAS  Google Scholar 

  33. Glass RE, Fern EB, Garlick PJ (1983) Whole-body protein turnover before and after resection of colorectal tumors. Clin Sci 64:101–108

    PubMed  CAS  Google Scholar 

  34. Waterlow JC, Garlick RJ, Millward DJ (1987) Protein turnover in mammalian tissues and in the whole body. North-Holland, Amsterdam, pp 225–300

    Google Scholar 

  35. Rennie MJ (1985) Muscle protein turnover and wasting due to injury and disease. Br Med Bull 41:257–264

    PubMed  CAS  Google Scholar 

  36. Shaw JHF, Humberstone DA (1988) Cancer: a metabolic parasite. Br J Surg 75:1262

    Article  Google Scholar 

  37. Heys SD, Park KGM, Milne E, Eremin O, Wernerman J, Keenan RA, Garlick PJ (1991) Stimulation of protein synthesis in human tumours by parenteral nutrition: evidence for modulation of tumour growth. Br J Surg 78:483–487

    Article  PubMed  CAS  Google Scholar 

  38. Mullen JL, Buzby GP, Gertner MH, Stein TP, Hargrove WC, Oram-Smith J, Rosato EF (1980) Protein synthesis dynamics in human gastrointestinal malignancies. Surgery 87:331–338

    PubMed  CAS  Google Scholar 

  39. Wolfe RR (1992) Radioactive and stable isotope tracers in biomedicine. Principles and practice of kinetic analysis. Wiley-Liss, New York, pp 341–355

    Google Scholar 

  40. Shaw JH, Wolfe RR (1988) Whole-body protein kinetics in patients with early and advanced gastrointestinal cancer: the response to glucose infusion and total parenteral nutrition. Surgery 103:148–155

    PubMed  CAS  Google Scholar 

  41. Haven FL, Bloor WR, Randall C (1949) Lipids of carcass, blood plasma, and adrenals of the rats in cancer. Cancer Res 9:511–514

    PubMed  CAS  Google Scholar 

  42. Mider GB, Sherman CD, Morton JJ (1949) The effect of Walker carcinoma 256 on the total lipid content of rats. Cancer Res 9:222–224

    PubMed  CAS  Google Scholar 

  43. Younes RN, Vydelingum NA, Noguchi Y, Brennan MF (1990) Lipid kinetic alterations in tumor-bearing rats: reversal by tumor excision. J Surg Res 48:324–328

    Article  PubMed  CAS  Google Scholar 

  44. Haven FL, Bloor WR, Randle C (1951) The nature of fatty acids in rats growing Walker carcinoma. Cancer Res 11:619–623

    PubMed  CAS  Google Scholar 

  45. Mider GB, Fenninger L, Haven FL, Morton JJ (1951) The energy expenditure of rats bearing Walker carcinoma. Cancer Res 11:731–736

    PubMed  CAS  Google Scholar 

  46. Frederick GL, Begg RW (1956) A study of hyperlipidemia in the tumor-bearing rats. Cancer Res 16:548–552

    PubMed  CAS  Google Scholar 

  47. Mays EG (1969) Serum lipids in human cancer. J Surg Res 9:273–277

    Article  PubMed  CAS  Google Scholar 

  48. Spiegel RJ, Schaefer EJ, Magrath IT, Edwards BK (1982) Plasma lipid alterations in leukemia and lymphoma. Am J Med 72:775–782

    Article  PubMed  CAS  Google Scholar 

  49. Hansell DT, Davies JWL, Burns HJG, Shenkin A (1986) The oxidation of body fuel stores in cancer patients. Ann Surg 204:637–642

    Article  PubMed  CAS  Google Scholar 

  50. Edén E, Edström S, Bennegård K, Lindmark L, Lundholm K (1985) Glycerol dynamics in weight-losing cancer patients. Surgery 97:176–184

    PubMed  Google Scholar 

  51. Jeevanandam M, Horowitz GD, Lowry SF, Brennan MF (1986) Cancer cachexia and the rate of whole body lipolysis in man. Metab Clin Exp 35:304–310

    PubMed  CAS  Google Scholar 

  52. Klein S, Wolfe RR (1990) Whole-body lipolysis and triglyceridefatty acid cycling in cachectic patients with esophageal cancer. J Clin Invest 86:1403–1408

    Article  PubMed  CAS  Google Scholar 

  53. Klein S, Peters EJ, Holland OB, Wolfe RR (1989) Effect of short- and long-term beta-adrenergic blockade on lipolysis during fasting in humans. Am J Physiol 257:E65-E73

    PubMed  CAS  Google Scholar 

  54. Wolfe RR, Herndon DN, Jahoor F, Miyoshi H, Wolfe M (1987) Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 317:403–408

    Article  PubMed  CAS  Google Scholar 

  55. Newsholme EA, Crabtree B (1976) Substrate cycles in metabolic regulation and in heat regulation. Biochem Soc Symp 41:61–109

    PubMed  CAS  Google Scholar 

  56. Wolfe RR, Klein S, Carraro F, Weber JM (1990) Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am J Physiol 258:E382-E389

    PubMed  CAS  Google Scholar 

  57. Wolfe RR, Peters EJ (1987) Lipolytic response to glucose infusion in human subjects. Am J Physiol 252:E218-E223

    PubMed  CAS  Google Scholar 

  58. Wilmore DW (1976) Hormonal responses and their effect on metabolism. Surg Clin North Am 56:999–1018

    PubMed  CAS  Google Scholar 

  59. Bessey PQ, Watters JM, Aoki TT, Wilmore DW (1984) Combined hormonal infusion simulates the metabolic response to injury. Ann Surg 200:264–281

    Article  PubMed  CAS  Google Scholar 

  60. Stovroff MC, Fraker DL, Norton JA (1989) Cachectin activity in the serum of cachectic, tumor-bearing rats. Arch Surg 124:94–99

    PubMed  CAS  Google Scholar 

  61. Tracey KJ, Wei H, Manogue KR, Fong Y, Hesse DG, Nguyen HT, Kuo GC, Beutler B, Cotran RS, Cerami A, Lowry SF (1988) Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation. J Exp Med 167:1211–1227

    Article  PubMed  CAS  Google Scholar 

  62. Hesse DG, Tracey KJ, Fong Y, Manogue KR, Palladino MA Jr, Cerami A, Shires GT, Lowry SF (1988) Cytokine appearance in human endotoxemia and primate bacteremia. Surg Gynecol Obstet 166:147–153

    PubMed  CAS  Google Scholar 

  63. Tracey KJ, Lowry SF, Fahey TJ III, Albert JD, Fong Y, Hesse D, Beutler B, Manogue KR, Calvano S, Wei H, Cerami A, Shires T (1987) Cachectin/tumor necrosis factor induces lethal shock and stress hormone responses in the dog. Surg Gynecol Obstet 164:415–422

    PubMed  CAS  Google Scholar 

  64. Brennan MF (1981) Total parenteral nutrition in the cancer patients. N Engl J Med 305:375–382

    Article  PubMed  CAS  Google Scholar 

  65. Jeevanandam M, Horowitz GD, Lowry SF, Brennan MF (1984) Cancer cachexia and protein metabolism. Lancet 1:1423–1426

    Article  PubMed  CAS  Google Scholar 

  66. Burt ME, Stein TP, Brennan MF (1983) A controlled randomized trial evaluating the effects of enteral and parenteral nutrition on protein metabolism in cancer bearing man. J Surg Res 34:303–314

    Article  PubMed  CAS  Google Scholar 

  67. Norton JA, Stein TP, Brennan MF (1981) Whole body protein synthesis and turnover in normal man and malnourished patients with and without cancer. Ann Surg 194:123–128

    Article  PubMed  CAS  Google Scholar 

  68. Steffee WP, Goldsmith RS, Pencharz PB, Scrimshaw NS, Young VR (1976) Dietary protein intake and dynamic aspects of whole body nitrogen metabolism in adult humans. Metab Clin Exp 25:281–297

    PubMed  CAS  Google Scholar 

  69. Golden M, Waterlow JC, Picou D (1977) The relationship between dietary intake, weight change, nitrogen balance and protein turnover in man. Am J Clin Nutr 30:1345–1348

    PubMed  CAS  Google Scholar 

  70. Garlick PJ, Clugston GA, Waterlow JC (1980) Influence of low energy diets on whole-body protein turnover in obese subjects. Am J Physiol 238:E235-E244

    PubMed  CAS  Google Scholar 

  71. Steiger E, Oram-Smith J, Miller E, Kuol E, Vars HM (1975) Effect of nutrition on tumor growth and tolerance to chemotherapy. J Surg Res 18:455–461

    Article  PubMed  CAS  Google Scholar 

  72. Ota DM, Copeland MD, Strobel HE (1977) The effect of protein nutrition on host and tumor metabolism. J Surg Res 22:181–188

    Article  PubMed  CAS  Google Scholar 

  73. Torosian MH, Daly JM (1986) Nutritional support in the cancerbearing host: effects on host and tumor. Cancer 58:1378–1386

    Article  Google Scholar 

  74. Torosian MH (1992) Stimulation of tumor growth by nutrition support. J Parent Enter Nutr 16:72S-75S

    Article  CAS  Google Scholar 

  75. Klein S, Simes J, Blackburn GL (1986) Total parenteral nutrition and cancer clinical trials. Cancer 58:1378–1386

    Article  PubMed  CAS  Google Scholar 

  76. Klein S, Koretz RL (1994) Nutritional support in patients with cancer: what do the data really show? Nutr Clin Pract 9:91–100

    Article  PubMed  CAS  Google Scholar 

  77. Kapadia CR, Colpoys MF, Ziang ZM, Johnson DJ, Smith RJ, Wilmore DW (1985) Maintenance of skeletal muscle intracellular glutamine during standard surgical trauma. J Parent Enter Nutr 9:583–589

    Article  CAS  Google Scholar 

  78. Rivera S, Azcón-Bieto J, López-Soriano FL, Miralpeix M, Argilés JM (1988) Amino acid metabolism in tumor-bearing mice. Biochem J 249:443–449

    PubMed  CAS  Google Scholar 

  79. Pacitti AJ, Chen MK, Bland KI, Copeland EM, Souba WW (1992) Mechanism of accelerated hepatic glutamine efflux in the tumor-bearing rat. Surg Oncol 1:173–182

    Article  PubMed  CAS  Google Scholar 

  80. Medina MA, Sánchez-Jiménez FS, Marquez J, Rodriguez-Quesada A, Núñez de Castro I (1992) Relevance of glutamine metabolism to tumor cell growth. Mol Cell Biochem 113:1–15

    Article  PubMed  CAS  Google Scholar 

  81. Souba WW, Strebel FR, Bull JM (1992) Interorgan metabolism in the tumor bearing rat. J Surg Res 50:391–397

    Google Scholar 

  82. Austgen TR, Dudrick PS, Sitren H, Bland KI, Copeland E, Souba WW (1992) The effects of glutamine-enriched total parenteral nutrition on tumor growth and host tissues. Ann Surg 215:107–113

    Article  PubMed  CAS  Google Scholar 

  83. Burke DJ, Alverdy JC, Aoys E, Moss GS (1989) Glutaminesupplemented total parenteral nutrition improves gut immune function. Arch Surg 124:1396–1399

    PubMed  CAS  Google Scholar 

  84. Alverdy JA, Aoys E, Weiss-Carrington P, Burke DA (1992) The effect of glutamine-enriched TPN on gut immune cellularity. J Surg Res 52:34–38

    Article  PubMed  CAS  Google Scholar 

  85. Souba WW (1993) Glutamine and cancer. Ann Surg 218:715–728

    Article  PubMed  CAS  Google Scholar 

  86. Marquez J, Sánchez-Jiménez FS, Medina MA, Quesada AR, Núñez de Castro I (1989) Nitrogen metabolism in tumor bearing mice. Arch Biochem Biophys 268:667–675

    Article  PubMed  CAS  Google Scholar 

  87. Kurzer M, Janiszewski J, Meguid MM (1988) Amino acid profiles in tumor-bearing and pair-fed nontumor-bearing malnourished rats. Cancer 62:1492–1496

    Article  PubMed  CAS  Google Scholar 

  88. Watanabe A, Higashi T, Sakata T, Nagashima H (1984) Serum amino acid levels in patients with hepatocellular carcinoma. Cancer 54:1875–1882

    Article  PubMed  CAS  Google Scholar 

  89. Ye S-L, Tang Z-Y, Liu H, Zhao Q-R, Zhu W-N (1987) Free amino acid contents of plasma and erythrocytes in patients with hepatocellular carcinoma. Nutrition 3:401–406

    Google Scholar 

  90. Norton JA, Gorshboth CM, Wesley RA, Burt ME, Brennan MF (1985) Fasting plasma amino acid levels in cancer patients. Cancer 56:1181–1186

    Article  PubMed  CAS  Google Scholar 

  91. Barbul A (1990) Arginine and immune function. Nutrition 6:53–58

    PubMed  CAS  Google Scholar 

  92. Barbul A (1986) Arginine: biochemistry, physiology, the therapeutic implications. J Parent Enter Nutr 10:227–238

    Article  CAS  Google Scholar 

  93. Barbul A, Knud-Hansen J, Wasserkrug HL, Efron G (1986) Interleukin-2 enhances wound healing in rats. J Surg Res 40:315–319

    Article  PubMed  CAS  Google Scholar 

  94. Reynolds JV, Thom AK, Zhang SM, Ziegler MM, Naji A, Daly JM (1988) Arginine, protein malnutrition, and cancer. J Surg Res 45:513–522

    Article  PubMed  CAS  Google Scholar 

  95. Reynolds JV, Daly JM, Zhang S, Evantash E, Shou J, Sigal R, Ziegler MM (1988) Immunomodulatory mechanisms of arginine. Surgery 104:142–151

    PubMed  CAS  Google Scholar 

  96. Hibbs JB, Vavrin Z, Tanitor RR (1987) L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol 139:550–565

    Google Scholar 

  97. Reynolds JV, Daly JM, Shou J, Sigal R, Ziegler MM, Naji A (1990) Immunologic effects of arginine supplementation in tumor-bearing and non-tumor-bearing hosts. Ann Surg 211:202–210

    Article  PubMed  CAS  Google Scholar 

  98. Okada A, Mori S, Totsuka M, Okamoto K, Usui S, Fujita H, Itakura T, Mizote H (1988) Branched-chain amino acids metabolic support in surgical patients: a randomized, controlled trial in patients with subtotal or total gastrectomy in 16 Japanese institutions. J Parent Enter Nutr 12:332–337

    Article  CAS  Google Scholar 

  99. Daly JM, Mihranian MH, Kehoe JE, Brennan MF (1983) Effects of postoperative infusion of branched chain amino acids on nitrogen balance and forearm substrate flux. Surgery 94:151–158

    PubMed  CAS  Google Scholar 

  100. Schaur RJ, Semmelrock H-J, Schreibmayer W, Tillian HM, Schauenstein E (1980) Tumor host relations: V. Nitrogen metabolism in Yoshida sarcoma-bearing rats reduction of growth rate and increase of survival time by administration of physiological doses of branched-chain amino acids. J Cancer Res Clin Oncol 97:285–293

    Article  PubMed  CAS  Google Scholar 

  101. Tayek JA, Bistrian BB, Hehir DJ, Martin R, Moldawer LL, Blackburn GL (1986) Improved protein kinetics and albumin synthesis by branched chain amino acid-enriched total parenteral nutrition in cancer cachexia. Cancer 58:147–157

    Article  PubMed  CAS  Google Scholar 

  102. Gelfand RA, Barrett EJ (1987) Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Invest 80:1–6.

    Article  PubMed  CAS  Google Scholar 

  103. Jahoor F, Shangraw RE, Miyoshi H, Wallfish H, Herndon DN, Wolfe RR (1989) Role of insulin and glucose oxidation in mediating the protein catabolism of burns and sepsis. Am J Physiol 257:E323-E331

    PubMed  CAS  Google Scholar 

  104. Wolf RF, Pearlstone DB, Newman E, Heslin MJ, Gonenne A, Burt ME, Brennan MF (1992) Growth hormone and insulin reverse net whole body and skeletal muscle protein catabolism in cancer patients. Ann Surg 216:280–288

    Article  PubMed  CAS  Google Scholar 

  105. Sakurai Y, Zhang X, Wolfe RR (1995) Insulin-like growth factor-I and insulin reduce leucine flux and oxidation in conscious TNF-infused dogs. Surgery 117:305–313

    Article  PubMed  CAS  Google Scholar 

  106. Osborne CK, Bolan G, Monaco ME, Lippman ME (1976) Hormone responsive human breast cancer in long-term tissue culture: effect of insulin. Proc Natl Acad Sci USA 73:4536–4540

    Article  PubMed  CAS  Google Scholar 

  107. Gross GE, Boldt DH, Osborne CK (1984) Pertubation by insulin of human breast cancer call cycle kinetics. Cancer Res 44:3570–3575

    PubMed  CAS  Google Scholar 

  108. Furlanetto RW, DiCarlo JN (1984) Somatomedic-C receptors and growth effects in human breast cancer cells maintained in long term tissue culture. Cancer Res 44:2122–2128

    PubMed  CAS  Google Scholar 

  109. Myal Y, Shiu RPC, Bhaumick B, Bala M (1984) Receptor binding and growth-promoting activity of insulin-like growth factors in human breast cancer cells (T47D) in culture. Cancer Res 44:5486–5490

    PubMed  CAS  Google Scholar 

  110. Arteaga CL, Kitten LJ, Coronado EB, Jacobs S, Kull FC Jr, Allred DC, Osborne CK (1989) Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J Clin Invest 84:1418–1423

    Article  PubMed  CAS  Google Scholar 

  111. Bartlett DL, Charland S, Torosian MH (1994) Growth hormone, insulin, and somatostatin therapy of cancer cachexia. Cancer 73:1499–1504

    Article  PubMed  CAS  Google Scholar 

  112. Church JM, Choong BY, Hill GL (1986) Abnormal muscle fructose biphosphatase activity in malnourished cancer patients. Cancer 58:2448–2452

    Article  PubMed  CAS  Google Scholar 

  113. Peacock JL, Inculet RI, Corsey R, Ford DB, Rumble WF, Lawson D, Norton JA (1987) Resting energy expenditure and body cell mass alterations in noncachectic patients with sarcomas. Surgery 102:465–473

    PubMed  CAS  Google Scholar 

  114. Pichard C, Roulet M, Schutz Y, Rössle C, Chiolero R, Temler E, Schindler C, Zurlo F, Fürst P, Jéquier E (1989) Clinical relevance of L-carnitine-supplemented total parenteral nutrition in postoperative trauma. Metabolic effects of continuous or acute carnitine administration with special reference to fat oxidation and notrogen utilization. Am J Clin Nutr 49:283–289

    PubMed  CAS  Google Scholar 

  115. Waterhouse C (1974) Lactate metabolism in patients with cancer. Cancer 33:66–71

    Article  PubMed  CAS  Google Scholar 

  116. Waterhouse C, Jeanpretre N, Keilson J (1979) Gluconeogenesis from alanine in patients with progressive malignant disease. Cancer Res 39:1968–1972

    PubMed  CAS  Google Scholar 

  117. Lundholm K, Edström S, Karlberg I, Ekman L, Scherstén T (1982) Glucose turnover, gluconeogenesis from glycerol, and estimation of net glucose cycling in cancer patients. Cancer 50:1142–1150

    Article  PubMed  CAS  Google Scholar 

  118. Holroyde CP, Skutches CL, Boden G, Reichard GA (1984) Glucose metabolism in cachectic patients with colorectal cancer. Cancer Res 44:5910–5913

    PubMed  CAS  Google Scholar 

  119. Long CL, Merrick H, Grecos G, Blakemore WS, Geiger J (1990) Glucose metabolism and colorectal carcinoma. Metab Clin Exp 39:494–501

    PubMed  CAS  Google Scholar 

  120. Emery PW, Edwards RHT, Rennie MJ, Souhami RL, Halliday D (1984) Protein synthesis in muscle measured in vivo in cachectic patients with cancer. Br Med J 289:584–597

    Article  CAS  Google Scholar 

  121. Fearon KCH, Hansell DT, Preston T, Plumb JA, Davies J, Shapiro D, Shenkin A, Calman KC, Burns HJG (1988) Influence of whole body protein turnover rate on resting energy expenditure in patients with cancer. Cancer Res 48:2590–2595

    PubMed  CAS  Google Scholar 

  122. Shaw JH, Wolfe RR (1987) Fatty acid and glycerol kinetics in septic patients and in patients with gastrointestinal cancer. The response to glucose infusion and parenteral feeding. Ann Surg 205:368–376

    Article  PubMed  CAS  Google Scholar 

  123. Legaspi A, Jeevanandam M, Starnes HF Jr, Brennan MF (1987) Whole body lipid and energy metabolism in the cancer patient. Metab Clin Exp 36:958–963

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakurai, Y., Klein, S. Metabolic alteration in patients with cancer: Nutritional implications. Surg Today 28, 247–257 (1998). https://doi.org/10.1007/s005950050116

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s005950050116

Key Words

Navigation