Skip to main content

Advertisement

Log in

Myocardial regenerative therapy using a scaffold-free skeletal-muscle-derived cell sheet in patients with dilated cardiomyopathy even under a left ventricular assist device: a safety and feasibility study

  • Original Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Background and purpose

Despite promising experimental results, clinically, intramyocardial myoblast injection failed to reverse remodeling and it induced arrhythmogenicity. In contrast, scaffold-free skeletal muscle-derived cell (SC) sheets attenuated cardiac dysfunction and arrhythmogenicity via paracrine effects. We report the first clinical trial of SC sheet implantation (SCSI) conducted in four patients with dilated cardiomyopathy (DCM) supported by a left ventricular assist device (LVAD).

Methods

SC sheets were made from muscle fibers and multi-layered SC sheets were applied to the left ventricular (LV) anterolateral surface via left thoracotomy.

Results

There were no major cardiac adverse events. Ventricular arrhythmia decreased in all except one patient, in whom global LV function did not improve. The LV volume decreased and LV ejection fraction improved in all except the same patient. Systolic wall thickening, reflecting regional wall motion, improved in the sheet-implanted areas, and vessels in the LV apex increased in all patients, suggesting angiogenesis. The LVAD was successfully removed in two patients.

Conclusions

SCSI induced reverse remodeling and angiogenesis, and improved LV function, allowing LVAD removal in two patients, although functional recovery failed to improve in the one non-responder, even with angiogenesis. SCSI is a promising regenerative therapy for DCM patients responsive to this strategy, even with LVAD assistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lala A, Joyce E, Groarke JD, Mehra MR. Challenges in long-term mechanical circulatory support and biological replacement of the failing heart. Circ J. 2014;78:288–99.

    Article  PubMed  Google Scholar 

  2. Toyoda Y, Guy TS, Kashem A. Present status and future perspectives of heart transplantation. Circ J. 2013;77:1097–110.

    Article  CAS  PubMed  Google Scholar 

  3. Dib N, Michler RE, Pagani FD, Wright S, Kereiakes DJ, Lengerich R, et al. Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation. 2005;112:1748–55.

    Article  PubMed  Google Scholar 

  4. Dowell JD, Rubart M, Pasumarthi KB, Soonpaa MH, Field LJ. Myocyte and myogenic stem cell transplantation in the heart. Cardiovasc Res. 2003;58:336–50.

    Article  CAS  PubMed  Google Scholar 

  5. Perez-Ilzarbe M, Agbulut O, Pelacho B, Ciorba C, San Jose-Eneriz E, Desnos M, et al. Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. Eur J Heart Fail. 2008;10:1065–72.

    Article  CAS  PubMed  Google Scholar 

  6. Hagege AA, Marolleau JP, Vilquin JT, Alheritiere A, Peyrard S, Duboc D, et al. Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients. Circulation. 2006;114:I108–13.

    Article  PubMed  Google Scholar 

  7. Menasche P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation. 2008;117:1189–200.

    Article  PubMed  Google Scholar 

  8. Hoashi T, Matsumiya G, Miyagawa S, Ichikawa H, Ueno T, Ono M, et al. Skeletal myoblast sheet transplantation improves the diastolic function of a pressure-overloaded right heart. J Thorac Cardiovasc Surg. 2009;138:460–7.

    Article  PubMed  Google Scholar 

  9. Kondoh H, Sawa Y, Miyagawa S, Sakakida-Kitagawa S, Memon IA, Kawaguchi N, et al. Longer preservation of cardiac performance by sheet-shaped myoblast implantation in dilated cardiomyopathic hamsters. Cardiovasc Res. 2006;69:466–75.

    Article  CAS  PubMed  Google Scholar 

  10. Miyagawa S, Saito A, Sakaguchi T, Yoshikawa Y, Yamauchi T, Imanishi Y, et al. Impaired myocardium regeneration with skeletal cell sheets–a preclinical trial for tissue-engineered regeneration therapy. In: Transplantation. 2010/06/18 ed; 2010. pp. 364–372.

  11. Miyagawa S, Roth M, Saito A, Sawa Y, Kostin S. Tissue-engineered cardiac constructs for cardiac repair. Ann Thorac Surg. 2011;91:320–9.

    Article  PubMed  Google Scholar 

  12. Sawa Y, Yoshikawa Y, Toda K, Fukushima S, Yamazaki K, Ono M, et al. Safety and efficacy of autologous skeletal myoblast sheets (TCD-51073) for the treatment of severe chronic heart failure due to ischemic heart disease. Circ J. 2015;79:991–9.

    Article  PubMed  Google Scholar 

  13. Matsumiya G, Saitoh S, Sakata Y, Sawa Y. Myocardial recovery by mechanical unloading with left ventricular assist system. Circ J. 2009;73:1386–92.

    Article  PubMed  Google Scholar 

  14. Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res. 2002;90:e40.

    Article  CAS  PubMed  Google Scholar 

  15. Shudo Y, Taniguchi K, Takeda K, Sakaguchi T, Matsue H, Izutani H, et al. Assessment of regional myocardial wall stress before and after surgical correction of functional ischaemic mitral regurgitation using multidetector computed tomography and novel software system. Eur J Cardiothorac Surg. 2010;38:163–70.

    Article  PubMed  Google Scholar 

  16. Lessick J, Ben-Haim T, Mutlak D, Abadi S, Agmon Y, Ghersin E. Quantitative evaluation of regional left ventricular function by multidetector computed tomography. J Comput Assist Tomogr. 2009;33:204–10.

    Article  PubMed  Google Scholar 

  17. van den Bos EJ, Thompson RB, Wagner A, Mahrholdt H, Morimoto Y, Thomson LE, et al. Functional assessment of myoblast transplantation for cardiac repair with magnetic resonance imaging. Eur J Heart Fail. 2005;7:435–43.

    Article  PubMed  Google Scholar 

  18. Miyagawa S, Toda K, Nakamura T, Yoshikawa Y, Fukushima S, Saito S, et al. Building a bridge to recovery: the pathophysiology of LVAD-induced reverse modeling in heart failure. Surg Today. 2016;46:149–54.

    Article  CAS  PubMed  Google Scholar 

  19. de Jonge N, van Wichen DF, Schipper ME, Lahpor JR, Gmelig-Meyling FH, Robles de Medina EO, et al. Left ventricular assist device in end-stage heart failure: persistence of structural myocyte damage after unloading. An immunohistochemical analysis of the contractile myofilaments. J Am Coll Cardiol. 2002;39:963–9.

    Article  PubMed  Google Scholar 

  20. Bruckner BA, Stetson SJ, Perez-Verdia A, Youker KA, Radovancevic B, Connelly JH, et al. Regression of fibrosis and hypertrophy in failing myocardium following mechanical circulatory support. J Heart Lung Transplant. 2001;20:457–64.

    Article  CAS  PubMed  Google Scholar 

  21. Zafeiridis A, Jeevanandam V, Houser SR, Margulies KB. Regression of cellular hypertrophy after left ventricular assist device support. Circulation. 1998;98:656–62.

    Article  CAS  PubMed  Google Scholar 

  22. Murtuza B, Suzuki K, Bou-Gharios G, Beauchamp JR, Smolenski RT, Partridge TA, et al. Transplantation of skeletal myoblasts secreting an IL-1 inhibitor modulates adverse remodeling in infarcted murine myocardium. Proc Natl Acad Sci USA. 2004;101:4216–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu Y, Rajur K, Tolbert E, Dworkin LD. Endogenous hepatocyte growth factor ameliorates chronic renal injury by activating matrix degradation pathways. Kidney Int. 2000;58:2028–43.

    Article  CAS  PubMed  Google Scholar 

  24. Miyagawa S, Sawa Y, Taketani S, Kawaguchi N, Nakamura T, Matsuura N, et al. Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation. 2002;105:2556–61.

    Article  CAS  PubMed  Google Scholar 

  25. Taniyama Y, Morishita R, Aoki M, Nakagami H, Yamamoto K, Yamazaki K, et al. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models: preclinical study for treatment of peripheral arterial disease. Gene Ther. 2001;8:181–9.

    Article  CAS  PubMed  Google Scholar 

  26. Lionetti V, Matteucci M, Ribezzo M, Di Silvestre D, Brambilla F, Agostini S, et al. Regional mapping of myocardial hibernation phenotype in idiopathic end-stage dilated cardiomyopathy. J Cell Mol Med. 2014;18:396–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fitzpatrick JR 3rd, Frederick JR, McCormick RC, Harris DA, Kim AY, Muenzer JR, et al. Tissue-engineered pro-angiogenic fibroblast scaffold improves myocardial perfusion and function and limits ventricular remodeling after infarction. J Thorac Cardiovasc Surg. 2010;140:667–76.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Abraham MR, Henrikson CA, Tung L, Chang MG, Aon M, Xue T, et al. Antiarrhythmic engineering of skeletal myoblasts for cardiac transplantation. Circ Res. 2005;97:159–67.

    Article  CAS  PubMed  Google Scholar 

  29. Fukushima S, Varela-Carver A, Coppen SR, Yamahara K, Felkin LE, Lee J, et al. Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation. 2007;115:2254–61.

    Article  PubMed  Google Scholar 

  30. Peters NS, Coromilas J, Severs NJ, Wit AL. Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation. 1997;95:988–96.

    Article  CAS  PubMed  Google Scholar 

  31. Yang Y, Min JY, Rana JS, Ke Q, Cai J, Chen Y, et al. VEGF enhances functional improvement of postinfarcted hearts by transplantation of ESC-differentiated cells. J Appl Physiol. 2002;93:1140–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Akima Harada for his excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Sawa.

Ethics declarations

Conflict of interest

UMIN study Identifier: UMIN000000660. All authors served as investigators in this trial.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshikawa, Y., Miyagawa, S., Toda, K. et al. Myocardial regenerative therapy using a scaffold-free skeletal-muscle-derived cell sheet in patients with dilated cardiomyopathy even under a left ventricular assist device: a safety and feasibility study. Surg Today 48, 200–210 (2018). https://doi.org/10.1007/s00595-017-1571-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-017-1571-1

Keywords

Navigation