Skip to main content

Advertisement

Log in

Molecular targeted agents for gastric and gastroesophageal junction cancer

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Despite recent improvements in surgical techniques and chemotherapy, advanced cancers of the stomach and gastroesophageal junction (GEJ) continue to have poor clinical outcomes. However, molecules intimately related to cancer cell proliferation, invasion, and metastasis have been studied as candidates for molecular targeted agents. Target molecules, such as the epidermal growth factor receptor, vascular endothelial growth factor receptor, and P13k/Akt/mTor pathway, as well as the insulin-like growth factor receptor, c-Met pathways, fibroblast growth factor receptor, and other pathways are considered to be promising candidates for molecular targeted therapy for gastric and GEJ cancer. In this review we focus on the recent developments in targeting relevant pathways in these types of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ku GY, Ilson DH. Esophagogastric cancer: targeted agents. Cancer Treat Rev. 2010;36:235–48.

    Article  PubMed  CAS  Google Scholar 

  2. Boku N. Perspectives for personalization in chemotherapy of advanced gastric cancer. Discov Med. 2010;9:84–9.

    PubMed  Google Scholar 

  3. Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys. 2004;59:21–6.

    Article  PubMed  CAS  Google Scholar 

  4. Oda K, Matsuoka Y, Funahashi A, Kitano H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol. 2005;1:1–17.

    Article  CAS  Google Scholar 

  5. Martinelli E, De Palma R, Orditura M, De Vita F, Ciardiello F. Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy. Clin Exp Immunol. 2009;158:1–9.

    Article  PubMed  CAS  Google Scholar 

  6. Saltz LB, Lenz HJ, Kindler HL, Hochster HS, Wadler S, Hoff PM, et al. Randomized phase II trial of cetuximab, bevacizumab, and irinotecan compared with cetuximab and bevacizumab alone in irinotecan-refractory colorectal cancer: the BOND-2 Study. J Clin Oncol. 2007;25:4557–61.

    Article  PubMed  CAS  Google Scholar 

  7. Pinto C, Di Fabio F, Siena S, Cascinu S, Rojas Llimpe FL, Ceccarelli C, et al. Phase II study of cetuximab in combination with FOLFIRI in patients with untreated advanced gastric or gastroesophageal junction adenocarcinoma (FOLCETUX study). Ann Oncol. 2007;18:510–7.

    Article  PubMed  CAS  Google Scholar 

  8. Lordick F, Luber B, Lorenzen S, Hegewisch-Becker S, Folprecht G, Wöll E, et al. Cetuximab plus oxaliplatin/leucovorin/5-fluorouracil in first-line metastatic gastric cancer: a phase II study of the Arbeitsgemeinschaft Internistische Onkologie (AIO). Br J Cancer. 2010;102:500–5.

    Article  PubMed  CAS  Google Scholar 

  9. Safran H, Suntharalingam M, Dipetrillo T, Ng T, Doyle LA, Krasna M, et al. Cetuximab with concurrent chemoradiation for esophagogastric cancer: assessment of toxicity. Int J Radiat Oncol Biol Phys. 2008;70:391–5.

    Article  PubMed  CAS  Google Scholar 

  10. Tebbutt NC, Sourjina T, Strickland AH, Van Hazel GA, Pavlakis N, Ganju V, et al. ATTAX2-docetaxel plus cetuximab as second-line treatment for docetaxel refractory oesophago-gastric cancer: final results of a multi-center phase II trial by the AGITG. J Clin Oncol. 2008;26:15S. (abstr 15554).

    Google Scholar 

  11. Agarwala A, Hanna N, McCollum A, Bechar N, DiMaio M, Yu M, et al. Preoperative cetuximab and radiation for patients with surgically resectable esophageal and gastroesophageal junction carcinomas: a pilot study from the Hoosier Oncology Group and the University of Texas Southwestern. J Clin Oncol. 2009;27:15S. (abstr 4557).

    Article  Google Scholar 

  12. Ma HY, Newman E, Ryan T, Miller G, Sarpel U, Pachter HL, et al. Neoadjuvant therapy of gastric cancer with cetuximab added to both irinotecan and cisplatin, followed by surgical resection and adjuvant chemoradiation. J Clin Oncol. 2009;27:15S. (abstr e15552).

    Article  CAS  Google Scholar 

  13. Kanzler S, Trarbach T, Seufferlein T, Kubicka S, Lordick F, Geissler M, et al. Cetuximab with irinotecan/folinic acid/5-FU as first-line treatment in advanced gastric cancer: a nonrandomized multicenter AIO phase II study. J Clin Oncol. 2009;27:15S. (abstr 4534).

    Article  Google Scholar 

  14. Han SW, Oh DY, Im SA, Park SR, Lee KW, Song HS, et al. Phase II study and biomarker analysis of cetuximab in combination with modified FOLFOX6 in advanced gastric cancer. Br J Cancer. 2009;100:298–304.

    Article  PubMed  CAS  Google Scholar 

  15. Pinto C, Di Fabio F, Barone C, Siena S, Falcone A, Cascinu S, et al. Phase II study of cetuximab in combination with cisplatin and docetaxel in patients with untreated advanced gastric or gastro-oesophageal junction adenocarcinoma (DOCETUX study). Br J Cancer. 2009;101:1261–8.

    Article  PubMed  CAS  Google Scholar 

  16. Woell E, Greil R, Eisterer W, Fridrik M, Grünberger B, Zabernigg A, et al. Oxaliplatin, irinotecan, and cetuximab in advanced gastric cancer. First efficacy results of a multicenter phase II trial (AGMT Gastric-2) of the arbeitsgemeinschaft medikamentoese tumortherapie (AGMT). J Clin Oncol. 2009;27:15S. (abstr 4538).

    Article  Google Scholar 

  17. Zhang X, Xu J, Shen L, Wang J, Liang J, Xu N, et al. A phase II study of cetuximab with cisplatin and capecitabine as first-line treatment in advanced gastric cancer. J Clin Oncol. 2008;26:15S. (abstr 15663).

    Google Scholar 

  18. Yeh K, Hsu C, Hsu C, Lin C, Shen Y, Wu S, et al. Phase II study of cetuximab plus weekly cisplatin and 24-hour infusion of high-dose 5-fluorouracil and leucovorin for the first-line treatment of advanced gastric cancer. J Clin Oncol. 2009;27:15S. (abstr 4567).

    Article  Google Scholar 

  19. Bjerregaard JK, Schonnemann KR, Jensen HA, Vestermark LW, Hansen TP, Pfeiffer P. Biweekly cetuximab and irinotecan as second-line therapy to patients with platinium-resistant gastroesophageal cancer. J Clin Oncol. 2009;27:15S. (abstr e15624).

    Article  Google Scholar 

  20. Kim C, Lee JL, Ryu MH, Chang HM, Kim TW, Lim HY, et al. A prospective phase II study of cetuximab in combination with XELOX (capecitabine and oxaliplatin) in patients with metastatic and/or recurrent advanced gastric cancer. Invest New Drugs. 2011;29:366–73.

    Article  PubMed  CAS  Google Scholar 

  21. Moehler M, Mueller A, Trarbach T, Lordick F, Seufferlein T, Kubicka S, et al. Cetuximab with irinotecan, folinic acid and 5-fluorouracil as first-line treatment in advanced gastroesophageal cancer: a prospective multi-center biomarker-oriented phase II study. Ann Oncol. 2011;22(6):1358–66.

    Article  PubMed  CAS  Google Scholar 

  22. Chan JA, Blaszkowsky LS, Enzinger PC, Ryan DP, Abrams TA, Zhu AX, et al. A multicenter phase II trial of single-agent cetuximab in advanced esophageal and gastric adenocarcinoma. Ann Oncol. 2011;22(6):1367–73.

    Article  PubMed  CAS  Google Scholar 

  23. Van Cutsem E, Peeters M, Siena S, Humblet Y, Hendlisz A, Neyns B, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol. 2007;25(13):1658–64.

    Article  PubMed  CAS  Google Scholar 

  24. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:1626–34.

    Article  PubMed  CAS  Google Scholar 

  25. Wang KL, Wu TT, Choi IS, Wang H, Resetkova E, Correa AM, et al. Expression of epidermal growth factor receptor in esophageal and esophagogastric junction adenocarcinomas: association with poor outcome. Cancer. 2007;109:658–67.

    Article  PubMed  CAS  Google Scholar 

  26. Kim JW, Kim HP, Im SA, Kang S, Hur HS, Yoon YK, et al. The growth inhibitory effect of lapatinib, a dual inhibitor of EGFR and HER2 tyrosine kinase, in gastric cancer cell lines. Cancer Lett. 2008;272:296–306.

    Article  PubMed  CAS  Google Scholar 

  27. Galizia G, Lieto E, Orditura M, Castellano P, Mura AL, Imperatore V, et al. Epidermal growth factor receptor (EGFR) expression is associated with a worse prognosis in gastric cancer patients undergoing curative surgery. World J Surg. 2007;31:1458–68.

    Article  PubMed  Google Scholar 

  28. Lieto E, Ferraraccio F, Orditura M, Castellano P, Mura AL, Pinto M, et al. Expression of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) is an independent prognostic indicator of worse outcome in gastric cancer patients. Ann Surg Oncol. 2008;15:69–79.

    Article  PubMed  Google Scholar 

  29. Sartore-Bianchi A, Ricotta R, Cerea G, Maugeri MR, Siena S. Rationale and clinical results of multi-target treatments in oncology. Int J Biol Markers. 2007;22:S77–87.

    PubMed  CAS  Google Scholar 

  30. Okines AF, Ashley SE, Cunningham D, Oates J, Turner A, Webb J, et al. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for advanced esophagogastric cancer: dose-finding study for the prospective multicenter, randomized, Phase II/III REAL-3 Trial. J Clin Oncol. 2010;28:3945–50.

    Article  PubMed  CAS  Google Scholar 

  31. Rao S, Starling N, Cunningham D, Benson M, Wotherspoon A, Lüpfert C, et al. Phase I study of epirubicin, cisplatin and capecitabine plus matuzumab in previously untreated patients with advanced oesophagogastric cancer. Br J Cancer. 2008;99:868–74.

    Article  PubMed  CAS  Google Scholar 

  32. Cunningham D, Starling N, Rao S, Iveson T, Nicolson M, Coxon F, et al. Capecitabine and oxaliplatin for advanced esophagogastric cancer. N Engl J Med. 2008;358:36–46.

    Article  PubMed  CAS  Google Scholar 

  33. Rojo F, Tabernero J, Albanell J, Van Cutsem E, Ohtsu A, Doi T, et al. Pharmacodynamic studies of gefitinib in tumor biopsy specimens from patients with advanced gastric carcinoma. J Clin Oncol. 2006;24:4309–16.

    Article  PubMed  CAS  Google Scholar 

  34. Dragovich T, McCoy S, Fenoglio-Preiser CM, Wang J, Benedetti JK, Baker AF, et al. Phase II trial of erlotinib in gastroesophageal junction and gastric adenocarcinomas: SWOG 0127. J Clin Oncol. 2006;24:4922–7.

    Article  PubMed  CAS  Google Scholar 

  35. Wainberg ZA, Lin L, DiCarlo B, Dao KM, Patel R, Park DJ, et al. Final results of a phase II study of modified FOLFOX6 and erlotinib in patients with metastatic adenocarcinoma of the esophagus and gastroesophageal junction. J Clin Oncol. 2010;28:15S. (abstr 4050).

    Google Scholar 

  36. Yano T, Ochiai A, Doi T, Hashizume K, Nakanishi M, Ouchi K, et al. Expression of HER2 in gastric cancer: comparison between protein expression and gene amplification using a new commercial kit. J Clin Oncol. 2004;22:14S. (abstr 4053).

    Google Scholar 

  37. Gravalos C, Márquez A, García-Carbonero R, Garcia-Carbonero R, Sastre J, Rivera F, et al. Correlation between Her2/neu overexpression/amplification and clinicopathological parameters in advanced gastric cancer patients: a prospective study. J Clin Oncol. 2006;24:18S. (abstr 4089).

    Article  Google Scholar 

  38. Park DI, Yun JW, Park JH, Oh SJ, Kim HJ, Cho YK, et al. HER-2/neu amplification is an independent prognostic factor in gastric cancer. Dig Dis Sci. 2006;51:1371–9.

    Article  PubMed  CAS  Google Scholar 

  39. Lordick F, Bang YJ, Kang YK, Otero Reyes D, Manikhas GM, Shen L, et al. HER2-positive advanced gastric cancer: similar HER2-positivity levels to breast cancer. Eur J Cancer. 2007;5:272. (abstr 3541).

    Google Scholar 

  40. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.

    Article  PubMed  CAS  Google Scholar 

  41. Yonemura Y, Ninomiya I, Yamaguchi A, Fushida S, Kimura H, Ohoyama S, et al. Evaluation of immunoreactivity for erbB-2 protein as a marker of poor short term prognosis in gastric cancer. Cancer Res. 1991;51:1034–8.

    PubMed  CAS  Google Scholar 

  42. Uchino S, Tsuda H, Maruyama K, Kinoshita T, Sasako M, Saito T, et al. Overexpression of c-erbB-2 protein in gastric cancer. Its correlation with long-term survival of patients. Cancer. 1993;72:3179–84.

    Article  PubMed  CAS  Google Scholar 

  43. Mizutani T, Onda M, Tokunaga A, Yamanaka N, Sugisaki Y. Relationship of C-erbB-2 protein expression and gene amplification to invasion and metastasis in human gastric cancer. Cancer. 1993;72:2083–8.

    Article  PubMed  CAS  Google Scholar 

  44. Allgayer H, Babic R, Gruetzner KU, Tarabichi A, Schildberg FW, Heiss MM. c-erbB-2 is of independent prognostic relevance in gastric cancer and is associated with the expression of tumor-associated protease systems. J Clin Oncol. 2000;18:2201–9.

    PubMed  CAS  Google Scholar 

  45. Tanner M, Hollmén M, Junttila TT, Kapanen AI, Tommola S, Soini Y, et al. Amplification of HER-2 in gastric carcinoma: association with topoisomerase IIalpha gene amplification, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann Oncol. 2005;16:273–8.

    Article  PubMed  CAS  Google Scholar 

  46. Matsui Y, Inomata M, Tojigamori M, Sonoda K, Shiraishi N, Kitano S. Suppression of tumor growth in human gastric cancer with HER2 overexpression by an anti-HER2 antibody in a murine model. Int J Oncol. 2005;27:681–5.

    PubMed  CAS  Google Scholar 

  47. Fujimoto-Ouchi K, Sekiguchi F, Yasuno H, Moriya Y, Mori K, Tanaka Y. Antitumor activity of trastuzumab in combination with chemotherapy in human gastric cancer xenograft models. Cancer Chemother Pharmacol. 2007;59:795–805.

    Article  PubMed  CAS  Google Scholar 

  48. Cortés-Funes H, Rivera F, Alés I, Márquez A, Velasco A, Colomer R, et al. Phase II of trastuzumab and cisplatin in patients with advanced gastric cancer with HER2/neu overexpression/amplification. J Clin Oncol. 2006;25:18S. (abstr 4613).

    Google Scholar 

  49. Safran H, Dipetrillo T, Akerman P, Ng T, Evans D, Steinhoff M, et al. Phase I/II study of trastuzumab, paclitaxel, cisplatin and radiation for locally advanced, HER2 overexpressing, esophageal adenocarcinoma. Int J Radiat Oncol Biol Phys. 2007;67:405–9.

    Article  PubMed  CAS  Google Scholar 

  50. Iqbal S, Goldman B, Lenz H, Fenoglio-Preiser C, Blanke C. S0413: a phase II SWOG study of GW572016 (lapatinib) as first line therapy in patients with advanced or metastatic gastric cancer. J Clin Oncol. 2007;25:18S. (abstr 4621).

    Google Scholar 

  51. Galsky M, Von Hoff D, Neubauer M, Anderson T, Fleming M, Sweetman RW, et al. Target-specific, histology independent, randomized discontinuation study of lapatinib in patients with HER2-amplified solid tumors. J Clin Oncol. 2009;27:15S. (abstr 3541).

    Article  Google Scholar 

  52. Sato H, Bang Y, Wang J, Xu J, Chung HC, Yeh K, et al. Interim safety analysis from TYTAN: a phase III Asian study of lapatinib in combination with paclitaxel as second-line therapy in gastric cancer. J Clin Oncol. 2010;28:15S. (abstr 4057).

    Google Scholar 

  53. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25.

    Article  PubMed  CAS  Google Scholar 

  54. Karayiannakis AJ, Syrigos KN, Polychronidis A, Zbar A, Kouraklis G, Simopoulos C, et al. Circulating VEGF levels in the serum of gastric cancer patients: correlation with pathological variables, patient survival, and tumor surgery. Ann Surg. 2002;236:37–42.

    Article  PubMed  Google Scholar 

  55. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.

    Article  PubMed  CAS  Google Scholar 

  56. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, et al. Paclitaxel–carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355:2542–50.

    Article  PubMed  CAS  Google Scholar 

  57. Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357:2666–76.

    Article  PubMed  CAS  Google Scholar 

  58. Shah MA, Ramanathan RK, Ilson DH, Levnor A, D’Adamo D, O’Reilly E, et al. Multicenter phase II study of irinotecan, cisplatin, and bevacizumab in patients with metastatic gastric or gastroesophageal junction adenocarcinoma. J Clin Oncol. 2006;24:5201–6.

    Article  PubMed  CAS  Google Scholar 

  59. El-Rayes BF, Hammad N, Philip PA, Shields AF, Heilbrun LK. A phase II study of bevacizumab, docetaxel, and oxaliplatin in gastric and gastroesophageal junction cancer. J Clin Oncol. 2008;26:15S. (abstr 15608).

    Google Scholar 

  60. Jhawer M, Kindler HL, Wainberg Z, Ford J, Kunz P, Tang L, et al. Assessment of two dosing schedules of GSK1363089 (GSK089), a dual MET/VEGFR2 inhibitor, in metastatic gastric cancer: interim results of a multicenter phase II study. J Clin Oncol. 2009;27:15S. (abstr 4502).

    Article  Google Scholar 

  61. El-Rayes BF, Zalupski M, Bekai-Saab T, Heilbrun LK, Hammad N, Patel B, et al. A phase II study of bevacizumab, oxaliplatin, and docetaxel in locally advanced and metastatic gastric and gastroesophageal junction cancers. Ann Oncol. 2010;21:1999–2004.

    Article  PubMed  CAS  Google Scholar 

  62. Cohenuram MK, Lacy J. FOLFOX6 and bevacizumab for metastatic esophageal, gastroesophageal, and gastric adenocarcinoma: a single institution’s initial clinical experience. Gastrointestinal Cancers Symposium. 2008 (abstr 74).

  63. Li J, Kortmansky S, Saif M, Fischbach NA, Ravage-Mass L, Elligers K, et al. Phase II study of mFOLFOX6 with bevacizumab in metastatic gastric and esophageal adenocarcinoma. J Clin Oncol. 2010;28:15S. (abstr TPS203).

    Article  Google Scholar 

  64. Kang Y, Ohtsu A, Van Cutsem E, Rha SY, Sawaki A, Park S, et al. AVAGAST: a randomized, double-blind, placebo-controlled, phase III study of first-line capecitabine and cisplatin plus bevacizumab or placebo in patients with advanced gastric cancer. J Clin Oncol. 2010;28:18S. (abstr LBA4007).

    Article  CAS  Google Scholar 

  65. Enzinger PC, Ryan DP, Regan EM, Lehman N, Abrams TA, Hezel AF, et al. Phase II trial of docetaxel, cisplatin, irinotecan, and bevacizumab in metastatic esophagogastric cancer. J Clin Oncol. 2008;26:15S. (abstr 4552).

    Google Scholar 

  66. Kelsen D, Jhawer M, Ilson D, Tse A, Randazzo J, Robinson E, et al. Analysis of survival with modified docetaxel, cisplatin, fluorouracil, and bevacizumab in patients with metastatic gastroesophageal adenocarcinoma: results of a phase II clinical trial. J Clin Oncol. 2009;27:15S. (abstr 4512).

    Article  Google Scholar 

  67. Bang Y, Kang Y, Kang W, Boku N, Chung H, Lanzalone S, et al. Sunitinib as second-line treatment for advanced gastric cancer: preliminary results from a phase II study. J Clin Oncol. 2007;25:18S. (abstr 4603).

    Google Scholar 

  68. Moehler MH, Hartmann JT, Lordick F, Al-Batran S, Reimer P, Trarbach T, et al. An open-label, multicenter phase II trial of sunitinib for patients with chemorefractory metastatic gastric cancer. J Clin Oncol. 2010;28:15S. (abstr e14503).

    Google Scholar 

  69. Yang S, Ngo VC, Lew GB, Chong LW, Lee SS, Ong WJ, et al. AZD6244 (ARRY-142886) enhances the therapeutic efficacy of sorafenib in mouse models of gastric cancer. Mol Cancer Ther. 2009;8:2537–45.

    Article  PubMed  CAS  Google Scholar 

  70. Kim C, Lee J, Choi Y, Kang B, Ryu M, Chang H, et al. Phase I dose-finding study of sorafenib in combination with capecitabine and cisplatin as a first-line treatment in patients with advanced gastric cancer. J Clin Oncol. 2009;27:15S. (abstr 4559).

    Article  Google Scholar 

  71. Sun W, Powell M, O’Dwyer PJ, Catalano P, Ansari RH, Benson AB 3rd. Phase II study of sorafenib in combination with docetaxel and cisplatin in the treatment of metastatic or advanced gastric and gastroesophageal junction adenocarcinoma: ECOG 5203. J Clin Oncol. 2010;28:2947–51.

    Article  PubMed  CAS  Google Scholar 

  72. Morgensztern D, McLeod HL. PI3k/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs. 2005;16:797–803.

    Article  PubMed  CAS  Google Scholar 

  73. Oki E, Baba H, Tokunaga E, Nakamura T, Ueda N, Futatsugi M, et al. Akt phosphorylation associates with LOH of PTEN and leads to chemoresistance for gastric cancer. Int J Cancer. 2005;117:376–80.

    Article  PubMed  CAS  Google Scholar 

  74. Yu HG, Ai YW, Yu LL, Zhou XD, Liu J, Li JH, et al. Phosphoinositide 3-kinase/Akt pathway plays an important role in chemoresistance of gastric cancer cells against etoposide and doxorubicin induced cell death. Int J Cancer. 2008;122:433–43.

    Article  PubMed  CAS  Google Scholar 

  75. Cejka D, Preusser M, Woehrer A, Sieghart W, Strommer S, Werzowa J, et al. Everolimus (RAD001) and anti-angiogenic cyclophosphamide show long-term control of gastric cancer growth in vivo. Cancer Biol Ther. 2008;7:1377–85.

    Article  PubMed  CAS  Google Scholar 

  76. Okamoto I, Doi T, Ohtsu A, Miyazaki M, Tsuya A, Kurei K, et al. Phase I clinical and pharmacokinetic study of RAD001 (everolimus) administered daily to Japanese patients with advanced solid tumors. Jpn J Clin Oncol. 2010;40:17–23.

    Article  PubMed  Google Scholar 

  77. Doi T, Muro K, Boku N, Yamada Y, Nishina T, Takiuchi H, et al. Multicenter phase II study of everolimus in patients with previously treated metastatic gastric cancer. J Clin Oncol. 2010;28:1904–10.

    Article  PubMed  CAS  Google Scholar 

  78. Foulstone E, Prince S, Zaccheo O, Burns JL, Harper J, Jacobs C, et al. Insulin-like growth factor ligands, receptors, and binding proteins in cancer. J Pathol. 2005;205:145–53.

    Article  PubMed  CAS  Google Scholar 

  79. Oshima T, Akaike M, Yoshihara K, Shiozawa M, Yamamoto N, Sato T, et al. Clinicopathological significance of the gene expression of matrix metalloproteinase-7, insulin-like growth factor-1, insulin-like growth factor-2 and insulin-like growth factor-1 receptor in patients with colorectal cancer: insulin-like growth factor-1 receptor gene expression is a useful predictor of liver metastasis from colorectal cancer. Oncol Rep. 2008;20:359–64.

    PubMed  CAS  Google Scholar 

  80. Matsubara J, Yamada Y, Nakajima TE, Kato K, Hamaguchi T, Shirao K, et al. Clinical significance of insulin-like growth factor type 1 receptor and epidermal growth factor receptor in patients with advanced gastric cancer. Oncology. 2008;74:76–83.

    Article  PubMed  CAS  Google Scholar 

  81. Hewish M, Chau I, Cunningham D. Insulin-like growth factor 1 receptor targeted therapeutics: novel compounds and novel treatment strategies for cancer medicine. Recent Pat Anticancer Drug Discov. 2009;4:54–72.

    Article  PubMed  CAS  Google Scholar 

  82. Haluska P, Shaw HM, Batzel GN, Yin D, Molina JR, Molife LR, et al. Phase I dose escalation study of the anti insulin-like growth factor-I receptor monoclonal antibody CP-751, 871 in patients with refractory solid tumors. Clin Cancer Res. 2007;13:5834–40.

    Article  PubMed  CAS  Google Scholar 

  83. Tolcher AW, Sarantopoulos J, Patnaik A, Papadopoulos K, Lin CC, Rodon J, et al. Phase I, pharmacokinetic, and pharmacodynamic study of AMG 479, a fully human monoclonal antibody to insulin-like growth factor receptor 1. J Clin Oncol. 2009;27:5800–7.

    Article  PubMed  CAS  Google Scholar 

  84. Karp DD, Pollak MN, Cohen RB, Eisenberg PD, Haluska P, Yin D, et al. Safety, pharmacokinetics, and pharmacodynamics of the insulin-like growth factor type 1 receptor inhibitor figitumumab (CP-751, 871) in combination with paclitaxel and carboplatin. J Thorac Oncol. 2009;4:1397–403.

    Article  PubMed  Google Scholar 

  85. Carden CP, Kim ES, Jones RL, Alam SM, Johnson FM, Stephens AW, et al. Phase I study of intermittent dosing of OSI-906, a dual tyrosine kinase inhibitor of insulin-like growth factor-1 receptor and insulin receptor in patients with advanced solid tumors. J Clin Oncol. 2010;28:15S. (abstr 2530).

    Google Scholar 

  86. Attard G, Fong PC, Molife R, Reade S, Shaw H, Reid A, et al. Phase I trial involving the pharmacodynamic study of circulating tumour cells, of CP-751,871, a monoclonal antibody against the insulin-like growth factor 1 receptor, with docetaxel in patients with advanced cancer. J Clin Oncol. 2006;24:18S. (abstr 3023).

    Article  Google Scholar 

  87. Lee JH, Han SU, Cho H, Jennings B, Gerrard B, Dean M, et al. A novel germ line juxtamembrane Met mutation in human gastric cancer. Oncogene. 2000;19:4947–53.

    Article  PubMed  CAS  Google Scholar 

  88. Inoue T, Kataoka H, Goto K, Nagaike K, Igami K, Naka D, et al. Activation of c-Met (hepatocyte growth factor receptor) in human gastric cancer tissue. Cancer Sci. 2004;95:803–8.

    Article  PubMed  CAS  Google Scholar 

  89. Amemiya H, Kono K, Itakura J, Tang RF, Takahashi A, An FQ, et al. C-Met expression in gastric cancer with liver metastasis. Oncology. 2002;63:286–96.

    Article  PubMed  CAS  Google Scholar 

  90. Nakajima M, Sawada H, Yamada Y, Watanabe A, Tatsumi M, Yamashita J, et al. The prognostic significance of amplification and overexpression of c-met and c-erb B-2 in human gastric carcinomas. Cancer. 2000;85:1894–902.

    Google Scholar 

  91. Yap TA, Harris D, Barriuso J, Wright M, Riisnaes R, Clark J, et al. Phase I trial to determine the dose range for the c-Met inhibitor ARQ 197 that inhibits c-Met and FAK phosphorylation, when administered by an oral twice-a-day schedule. J Clin Oncol. 2008;26:15S. (abstr 3584).

    Google Scholar 

  92. Garcia A, Rosen L, Cunningham CC, Nemunaitis J, Li C, Rulewski N. Phase 1 study of ARQ 197, a selective inhibitor of the c-Met RTK in patients with metastatic solid tumors reaches recommended phase 2 dose. J Clin Oncol. 2007;25:18S. (abstr 3525).

    Article  Google Scholar 

  93. Jhawer M, Kindler HL, Wainberg Z, Ford J, Kunz P, Tang L, et al. Assessment of two dosing schedules of GSK1363089 (GSK089), a dual MET/VEGFR2 inhibitor, in metastatic gastric cancer: interim results of a multicenter phase II study. J Clin Oncol. 2009;27:15S. (abstr 4502).

    Article  Google Scholar 

  94. Grose R, Dickson C. Fibroblast growth factor signaling in tumorigenesis. Cytokine Growth Factor Rev. 2005;16:179–86.

    Article  PubMed  CAS  Google Scholar 

  95. Moffa AB, Tannheimer SL, Ethier SP. Transforming potential of alternatively spliced variants of fibroblast growth factor receptor 2 in human mammary epithelial cells. Mol Cancer Res. 2004;2:643–52.

    PubMed  CAS  Google Scholar 

  96. Hattori Y, Itoh H, Uchino S, Hosokawa K, Ochiai A, Ino Y, et al. Immunohistochemical detection of K-sam protein in stomach cancer. Clin Cancer Res. 1996;2:1373–81.

    PubMed  CAS  Google Scholar 

  97. Takeda M, Arao T, Yokote H, Komatsu T, Yanagihara K, Sasaki H, et al. AZD2171 shows potent antitumor activity against gastric cancer over-expressing fibroblast growth factor receptor 2/keratinocyte growth factor receptor. Clin Cancer Res. 2007;13:3051–7.

    Article  PubMed  CAS  Google Scholar 

  98. Nakamura K, Yashiro M, Matsuoka T, Tendo M, Shimizu T, Miwa A, et al. A novel molecular targeting compound as K-samII/FGF-R2 phosphorylation inhibitor, Ki23057, for scirrhous gastric cancer. Gastroenterology. 2006;131:1530–41.

    Article  PubMed  CAS  Google Scholar 

  99. Workman P, Burrows F, Neckers L, Rosen N. Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann NY Acad Sci. 2007;1113:202–16.

    Article  PubMed  CAS  Google Scholar 

  100. Neckers L. Heat shock protein 90: the cancer chaperone. J Biosci. 2007;32:517–30.

    Article  PubMed  CAS  Google Scholar 

  101. Zuo DS, Dai J, Bo AH, Fan J, Xiao XY. Significance of expression of heat shock protein 90 alpha in human gastric cancer. World J Gastroenterol. 2003;9:2616–8.

    PubMed  CAS  Google Scholar 

  102. Lang SA, Klein D, Moser C, Gaumann A, Glockzin G, Dahlke MH, et al. Inhibition of heat shock protein 90 impairs epidermal growth factor-mediated signaling in gastric cancer cells and reduces tumor growth and vascularization in vivo. Mol Cancer Ther. 2007;6:1123–32.

    Article  PubMed  CAS  Google Scholar 

  103. Goldman JW, Raju RN, Gordon GA, Vukovic VM, Bradley R, Rosen LS. A phase I dose-escalation study of the HSP90 inhibitor STA-9090 administered once weekly in patients with solid tumors. J Clin Oncol. 2010;28:15S. (abstr 2529).

    Google Scholar 

  104. Cleary JM, Heath EI, Kwak EL, Dezube BJ, Gandhi L, Zack C, et al. A phase I dose-escalation study of the HSP90 inhibitor STA-9090 administered twice weekly in patients with solid tumors. J Clin Oncol. 2010;28:15S. (abstr 3083).

    Article  Google Scholar 

  105. Latonen L, Moore HM, Bai B, Jäämaa S, Laiho M. Proteasome inhibitors induce nucleolar aggregation of proteasome target proteins and polyadenylated RNA by altering ubiquitin availability. Oncogene. 2011;30:790–805.

    Article  PubMed  CAS  Google Scholar 

  106. Bae SH, Ryoo HM, Kim MK, Lee KH, Sin JI, Hyun MS, et al. Effects of the proteasome inhibitor bortezomib alone and in combination with chemotherapeutic agents in gastric cancer cell lines. Oncol Rep. 2008;19:1027–32.

    PubMed  CAS  Google Scholar 

  107. Shah MA, Jhawer M, Ilson DH, Lefkowitz RA, Robinson E, Capanu M, et al. Phase II study of modified docetaxel, cisplatin, and fluorouracil with bevacizumab in patients with metastatic gastroesophageal adenocarcinoma. J Clin Oncol. 2011;29(7):868–74.

    Article  PubMed  CAS  Google Scholar 

  108. Ocean AJ, Schnoll-Sussman F, Keresztes R, Chen X, Holloway S, Matthews N, et al. Phase II study of PS-341 (bortezomib) with or without irinotecan in patients with advanced gastric adenocarcinomas. J Clin Oncol. 2007;24:18S. (abstr 14040).

    Google Scholar 

  109. Jatoi A, Dakhil SR, Foster NR, Ma C, Rowland KM Jr, Moore DF Jr, et al. Bortezomib, paclitaxel, and carboplatin as a first-line regimen for patients with metastatic esophageal, gastric, and gastroesophageal cancer: phase II results from the North Central Cancer Treatment Group (N044B). J Thorac Oncol. 2008;3:516–20.

    Article  PubMed  Google Scholar 

  110. Carmena M, Ruchaud S, Earnshaw WC. Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Curr Opin Cell Biol. 2009;21(6):796–805.

    Article  PubMed  CAS  Google Scholar 

  111. Dar AA, Zaika A, Piazuelo MB, Correa P, Koyama T, Belkhiri A, et al. Frequent overexpression of Aurora kinase A in upper gastrointestinal adenocarcinomas correlates with potent antiapoptotic functions. Cancer. 2008;112:1688–98.

    Article  PubMed  CAS  Google Scholar 

  112. Macarulla T, Ramos FJ, Tabernero J. Aurora kinase family: a new target for anticancer drug. Recent Pat Anticancer Drug Discov. 2008;3:114–22.

    Article  PubMed  CAS  Google Scholar 

  113. Robert F, Verschraegen CF, Hurwitz H, Uronis H, Advani R, Chen A, et al. A phase I trial of sns-314, a novel and selective pan-aurora kinase inhibitor, in advanced solid tumor patients. J Clin Oncol. 2009;27:15S. (abstr 2536).

    Article  Google Scholar 

  114. Kristeleit R, Calvert H, Arkenau H, Olmos D, Adam J, Plummer ER, et al. A phase I study of AT9283, an aurora kinase inhibitor, in patients with refractory solid tumors. J Clin Oncol. 2009;27:15S. (abstr 2566).

    Article  Google Scholar 

  115. Takai N, Hamanaka R, Yoshimatsu J, Miyakawa I. Polo-like kinases (Plks) and cancer. Oncogene. 2005;24:287–91.

    Article  PubMed  CAS  Google Scholar 

  116. Jang YJ, Kim YS, Kim WH. Oncogenic effect of Polo-like kinase 1 expression in human gastric carcinomas. Int J Oncol. 2006;29:589–94.

    PubMed  CAS  Google Scholar 

  117. Kanaji S, Saito H, Tsujitani S, Matsumoto S, Tatebe S, Kondo A, et al. Expression of polo-like kinase 1 (PLK1) protein predicts the survival of patients with gastric carcinoma. Oncology. 2006;70:126–33.

    Article  PubMed  CAS  Google Scholar 

  118. Olmos D, Barker D, Sharma R, Brunetto AT, Yap TA, Taegtmeyer AB, et al. Phase I study of GSK461364, a specific and competitive Polo-like Kinase 1 (PLK1) inhibitor in patients with advanced solid malignancies. Clin Cancer Res. 2011;17:3420–30.

    Google Scholar 

  119. Senderowicz AM. Small molecule modulators of cyclin-dependent kinases for cancer therapy. Oncogene. 2000;19:6600–6.

    Article  PubMed  CAS  Google Scholar 

  120. Kaur G, Stetler-Stevenson M, Sebers S, Worland P, Sedlacek H, Myers C, et al. Growth inhibition with reversible cell cycle arrest of carcinoma cells by flavone L86–8275. J Natl Cancer Inst. 1992;84:1736–40.

    Article  PubMed  CAS  Google Scholar 

  121. Carlson BA, Dubay MM, Sausville EA, Brizuela L, Worland PJ. Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase CDK2 and CDK4 in human breast carcinoma cells. Cancer Res. 1996;56:2973–8.

    PubMed  CAS  Google Scholar 

  122. Losiewicz MD, Carlson BA, Kaur G, Sausville EA, Worland PJ. Potent inhibition of cdc2 kinase activity by the flavonoid L86–8275. Biochem Biophys Res Commun. 1994;201:589–95.

    Article  PubMed  CAS  Google Scholar 

  123. Patel V, Senderowicz AM, Pinto D Jr. Flavopiridol, a novel cyclin-dependent kinase inhibitor, suppresses the growth of head and neck squamous cell carcinomas by inducing apoptosis. J Clin Invest. 1998;102:1674–81.

    Article  PubMed  CAS  Google Scholar 

  124. Melillo G, Sausville EA, Cloud K, Lahusen T, Varesio L, Senderowicz AM. Flavopiridol, a protein kinase inhibitor, down-regulates hypoxic induction of vascular endothelial growth factor expression in human monocytes. Cancer Res. 1999;59:5433–7.

    PubMed  CAS  Google Scholar 

  125. Bible KC, Kaufmann SH. Cytotoxic synergy between flavopiridol (NSC 649890, L86–8275) and various antineoplastic agents: the importance of sequence of administration. Cancer Res. 1997;57:3375–80.

    PubMed  CAS  Google Scholar 

  126. Motwani M, Delohery TM, Schwartz GK. Sequential dependent enhancement of caspase activation and apoptosis by flavopiridol on paclitaxel-treated human gastric and breast cancer cells. Clin Cancer Res. 1999;5:1876–83.

    PubMed  CAS  Google Scholar 

  127. Thomas JP, Tutsch KD, Cleary JF, Bailey HH, Arzoomanian R, Alberti D, et al. Phase I clinical and pharmacokinetic trial of the cyclin-dependent kinase inhibitor flavopiridol. Cancer Chemother Pharmacol. 2002;50:465–72.

    Article  PubMed  CAS  Google Scholar 

  128. Dickson MA, Carvajal RD, Shah M, Tse AN, Dials H, Cane LM, et al. A phase I clinical trial of FOLFIRI in combination with the pancyclin-dependent kinase inhibitor flavopiridol. J Clin Oncol. 2009;27:15S. (abstr e14511).

    Article  Google Scholar 

  129. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92.

    Article  PubMed  CAS  Google Scholar 

  130. Miremadi A, Oestergaard MZ, Pharoah PD, Caldas C. Cancer genetics of epigenetic genes. Hum Mol Genet. 2007;16:R28–49.

    Article  PubMed  CAS  Google Scholar 

  131. Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999;401:188–93.

    Article  PubMed  CAS  Google Scholar 

  132. Beckers T, Burkhardt C, Wieland H, Gimmnich P, Clossek T, Maier T, et al. Distinct pharmacological properties of second generation HDAC inhibitors with the benzamide or hydroxamate head group. Int J Cancer. 2007;121:1138–48.

    Article  PubMed  CAS  Google Scholar 

  133. Lane AA, Chabner BA. Histone deacetylase inhibitors in cancer therapy. J Clin Oncol. 2009;27:5459–68.

    Article  PubMed  CAS  Google Scholar 

  134. Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol. 2007;25:84–90.

    Article  PubMed  CAS  Google Scholar 

  135. Cheema HS, Motwani MV, Schwartz GK. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, induces a unique mitotic effect and potentiates flavopiridol induced apoptosis. Proc Am Assoc Cancer Res. 2004;45 (abstr 2443).

  136. Chin K, Hatake K, Hamaguchi T, Shirao K, Doi T, Noguchi K, et al. A phase I study of vorinostat (suberoylanilide hydroxamic acid, SAHA) in Japanese patients with gastrointestinal cancer. J Clin Oncol. 2008;26:15S. (abstr 15656).

    Google Scholar 

  137. Fetterly GJ, Brady WE, LeVea CM, Litwin AM, Zagst PD, Prey JD, et al. A phase I pharmacokinetic study of vorinostat in combination with irinotecan, 5-fluorouracil, and leucovorin in advanced upper gastrointestinal cancers. J Clin Oncol. 2009;26:15S. (abstr e15540).

    Google Scholar 

  138. Yen LC, Uen YH, Wu DC, Lu CY, Yu FJ, Wu IC, et al. Activating KRAS mutations and overexpression of epidermal growth factor receptor as independent predictors in metastatic colorectal cancer patients treated with cetuximab. Ann Surg. 2010;251:254–60.

    Article  PubMed  Google Scholar 

  139. Park SR, Kook MC, Choi IJ, Kim CG, Lee JY, Cho SJ, et al. Predictive factors for the efficacy of cetuximab plus chemotherapy as salvage therapy in metastatic gastric cancer patients. Cancer Chemother Pharmacol. 2010;65:579–87.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Oshima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oshima, T., Masuda, M. Molecular targeted agents for gastric and gastroesophageal junction cancer. Surg Today 42, 313–327 (2012). https://doi.org/10.1007/s00595-011-0065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-011-0065-9

Keywords

Navigation