Skip to main content

Advertisement

Log in

Prognostic significance of glucose transporter-1 (GLUT1) gene expression in rectal cancer after preoperative chemoradiotherapy

  • Original Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Purpose

Most cancer cells exhibit increased glycolysis. The elevated glucose transporter 1 (GLUT1) expression has been reported to be associated with resistance to therapeutic agents and a poor prognosis. We wondered whether GLUT1 expression was associated with the clinical outcome in rectal cancer after preoperative chemoradiotherapy (CRT), and whether glycolysis inhibition could represent a novel anticancer treatment.

Methods

We obtained total RNA from residual cancer cells using microdissection from a total of 52 rectal cancer specimens from patients who underwent preoperative CRT. We performed transcriptional analyzes, and studied the association of the GLUT1 gene expression levels with the clinical outcomes. In addition, we examined each proliferative response of three selected colorectal cancer cell lines to a glycolysis inhibitor, 3-bromopyruvic acid (3-BrPA), with regard to their expression of the GLUT1 gene.

Results

An elevated GLUT1 gene expression was associated with a high postoperative stage, the presence of lymph node metastasis, and distant recurrence. Moreover, elevated GLUT1 gene expression independently predicted both the recurrence-free and overall survival. In the in vitro studies, we observed that 3-BrPA significantly suppressed the proliferation of colon cancer cells with high GLUT1 gene expression, compared with those with low expression.

Conclusion

An elevated GLUT1 expression may be a useful predictor of distant recurrence and poor prognosis in rectal cancer patients after preoperative CRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.

    Article  PubMed  CAS  Google Scholar 

  2. Gillies RJ, Robey I, Gatenby RA. Causes and consequences of increased glucose metabolism of cancers. J Nucl Med. 2008;49(suppl 2):24S–42S.

    Article  PubMed  CAS  Google Scholar 

  3. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–9.

    Article  PubMed  CAS  Google Scholar 

  4. Asano T, Katagiri H, Takata K, Lin JL, Ishihara H, Inukai K, et al. The role of N-glycosylation of GLUT1 for glucose transport activity. J Biol Chem. 1991;266(36):24632–6.

    PubMed  CAS  Google Scholar 

  5. Furuta E, Okuda H, Kobayashi A, Watabe K. Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim Biophys Acta. 2010;1805(2):141–52.

    PubMed  CAS  Google Scholar 

  6. Cantuaria G, Fagotti A, Ferrandina G, Magalhaes A, Nadji M, Angioli R, et al. GLUT-1 expression in ovarian carcinoma: association with survival and response to chemotherapy. Cancer. 2001;92(5):1144–50.

    Article  PubMed  CAS  Google Scholar 

  7. Wang BY, Kalir T, Sabo E, Sherman DE, Cohen C, Burstein DE. Immunohistochemical staining of GLUT1 in benign, hyperplastic, and malignant endometrial epithelia. Cancer. 2000;88(12):2774–81.

    Article  PubMed  CAS  Google Scholar 

  8. Brown RS, Wahl RL. Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer. 1993;72(10):2979–85.

    Article  PubMed  CAS  Google Scholar 

  9. Haber RS, Rathan A, Weiser KR, Pritsker A, Itzkowitz SH, Bodian C, et al. GLUT1 glucose transporter expression in colorectal carcinoma: a marker for poor prognosis. Cancer. 1998;83(1):34–40.

    Article  PubMed  CAS  Google Scholar 

  10. Younes M, Lechago LV, Lechago J. Overexpression of the human erythrocyte glucose transporter occurs as a late event in human colorectal carcinogenesis and is associated with an increased incidence of lymph node metastases. Clin Cancer Res. 1996;2(7):1151–4.

    PubMed  CAS  Google Scholar 

  11. Sakashita M, Aoyama N, Minami R, Maekawa S, Kuroda K, Shirasaka D, et al. Glut1 expression in T1 and T2 stage colorectal carcinomas: its relationship to clinicopathological features. Eur J Cancer. 2001;37(2):204–9.

    Article  PubMed  CAS  Google Scholar 

  12. Chung FY, Huang MY, Yeh CS, Chang HJ, Cheng TL, Yen LC, et al. GLUT1 gene is a potential hypoxic marker in colorectal cancer patients. BMC Cancer. 2009;9:241.

    Article  PubMed  Google Scholar 

  13. Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene. 2006;25(34):4633–46.

    Article  PubMed  CAS  Google Scholar 

  14. Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, et al. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun. 2004;324(1):269–75.

    Article  PubMed  CAS  Google Scholar 

  15. Geschwind JF, Ko YH, Torbenson MS, Magee C, Pedersen PL. Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res. 2002;62(14):3909–13.

    PubMed  CAS  Google Scholar 

  16. Gatenby RA, Gillies RJ. Glycolysis in cancer: a potential target for therapy. Int J Biochem Cell Biol. 2007;39(7–8):1358–66.

    Article  PubMed  CAS  Google Scholar 

  17. Sauer R, Becker H, Hohenberger W, Rodel C, Wittekind C, Fietkau R, et al. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351(17):1731–40.

    Article  PubMed  CAS  Google Scholar 

  18. Guillem JG, Chessin DB, Cohen AM, Shia J, Mazumdar M, Enker W, et al. Long-term oncologic outcome following preoperative combined modality therapy and total mesorectal excision of locally advanced rectal cancer. Ann Surg. 2005;241(5):829–36 (discussion 836–8).

    Google Scholar 

  19. Bosset JF, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, et al. Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med. 2006;355(11):1114–23.

    Article  PubMed  CAS  Google Scholar 

  20. Inoue Y, Kusunoki M. Resection of rectal cancer: a historical review. Surg Today. 2010;40(6):501–6.

    Article  PubMed  Google Scholar 

  21. Yoshikawa R, Kusunoki M, Yanagi H, Noda M, Furuyama JI, Yamamura T, et al. Dual antitumor effects of 5-fluorouracil on the cell cycle in colorectal carcinoma cells: a novel target mechanism concept for pharmacokinetic modulating chemotherapy. Cancer Res. 2001;61(3):1029–37.

    PubMed  CAS  Google Scholar 

  22. Japanese Society for Cancer of the Colon and Rectum. General rules for clinical and pathological studies on cancer of the colon, rectum and anus. Tokyo: Kanehara; 2006.

  23. Bijwaard KE, Aguilera NS, Monczak Y, Trudel M, Taubenberger JK, Lichy JH. Quantitative real-time reverse transcription-PCR assay for cyclin D1 expression: utility in the diagnosis of mantle cell lymphoma. Clin Chem. 2001;47(2):195–201.

    PubMed  CAS  Google Scholar 

  24. Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H, et al. Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science. 2009;325(5947):1555–9.

    Article  PubMed  CAS  Google Scholar 

  25. Kim JS, Ahn KJ, Kim JA, Kim HM, Lee JD, Lee JM, et al. Role of reactive oxygen species-mediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells: ROS-mediated cell death by 3-BrPA. J Bioenerg Biomembr. 2008;40(6):607–18.

    Article  PubMed  CAS  Google Scholar 

  26. Brophy S, Sheehan KM, McNamara DA, Deasy J, Bouchier-Hayes DJ, Kay EW. GLUT-1 expression and response to chemoradiotherapy in rectal cancer. Int J Cancer. 2009;125(12):2778–82.

    Article  PubMed  CAS  Google Scholar 

  27. Rodel C, Martus P, Papadoupolos T, Fuzesi L, Klimpfinger M, Fietkau R, et al. Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol. 2005;23(34):8688–96.

    Article  PubMed  Google Scholar 

  28. Dhadda AS, Dickinson P, Zaitoun AM, Gandhi N, Bessell EM. Prognostic importance of Mandard tumour regression grade following pre-operative chemo/radiotherapy for locally advanced rectal cancer. Eur J Cancer. 2011;47(8):1138–45.

    Article  PubMed  CAS  Google Scholar 

  29. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, et al. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 2005;65(2):613–21.

    PubMed  CAS  Google Scholar 

  30. Andreyev HJ, Norman AR, Cunningham D, Oates J, Dix BR, Iacopetta BJ, et al. Kirsten ras mutations in patients with colorectal cancer: the ‘RASCAL II’ study. Br J Cancer. 2001;85(5):692–6.

    Article  PubMed  CAS  Google Scholar 

  31. Lievre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66(8):3992–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Motoko Ueeda and Yuka Kato for providing excellent technical assistance.

Conflict of interest

Susumu Saigusa and co-authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Saigusa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saigusa, S., Toiyama, Y., Tanaka, K. et al. Prognostic significance of glucose transporter-1 (GLUT1) gene expression in rectal cancer after preoperative chemoradiotherapy. Surg Today 42, 460–469 (2012). https://doi.org/10.1007/s00595-011-0027-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-011-0027-2

Keywords

Navigation