Skip to main content

Advertisement

Log in

Therapeutic approach against intimal hyperplasia of vein grafts through endothelial nitric oxide synthase/nitric oxide (eNOS/NO) and the Rho/Rho-kinase pathway

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Late graft failure of autologous vein grafts is associated with intimal hyperplasia resulting from the migration and proliferation of vascular smooth muscle cells (VSMCs). Endothelial nitric oxide synthase (eNOS) is an enzyme that synthesizes nitric oxide (NO). An impairment of NO-mediated vasorelaxation and increases in cell proliferation occurs in vein grafts after the surgery and these pathophysiological changes cause intimal thickening. The Rho/Rho-kinase pathway negatively regulates eNOS and is involved in intimal hyperplasia. Several studies have been conducted with the goal of controlling intimal hyperplasia targeting eNOS/NO and the Rho/Rho-kinase pathway. The oral administration of drugs, such as Rho-kinase inhibitor, l-arginine, beta-blocker and statins, significantly suppressed intimal thickening in animal models. This study revealed that statins upregulate eNOS through Rho-kinase inhibition to suppress intimal hyperplasia. The intraluminal gene transfer of eNOS inhibited intimal hyperplasia, thereby reducing the cell proliferation. These approaches are thus considered to be potentially promising therapeutic modalities for graft failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg 2007;45:S5–67.

    Article  PubMed  Google Scholar 

  2. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, et al. ACC/AHA 2005 Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic). J Am Coll Cardiol 2006;47:1239–1312.

    Article  PubMed  Google Scholar 

  3. Veith FJ, Gupta SK, Ascer E, White-Flores S, Samson RH, Scher LA, et al. Six-year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions. J Vasc Surg 1986;3:104–114.

    Article  PubMed  CAS  Google Scholar 

  4. Watson HR, Buth J, Schroeder TV, Simms MH, Horrocks M. Incidence of stenoses in femorodistal bypass vein grafts in a multicentre study. Eur J Vasc Endovasc Surg 2000;20:67–71.

    Article  PubMed  CAS  Google Scholar 

  5. Craver JM, Ottinger LW, Darling RC, Austen WG, Linton RR. Hemorrhage and thrombosis as early complications of femoropopliteal bypass grafts: causes, treatment, and prognostic implications. Surgery 1973;74:839–845.

    PubMed  CAS  Google Scholar 

  6. Bryan AJ, Angelini GD. The biology of saphenous vein graft occlusion: etiology and strategies for prevention. Curr Opin Cardiol 1994;9:641–649.

    Article  PubMed  CAS  Google Scholar 

  7. Donaldson MC, Mannick JA, Whittemore AD. Causes of primary graft failure after in situ saphenous vein bypass grafting. J Vasc Surg 1992;15:113–120.

    Article  PubMed  CAS  Google Scholar 

  8. Belkin M, Knox J, Donaldson MC, Mannick JA, Whittemore AD. Infrainguinal arterial reconstruction with nonreversed greater saphenous vein. J Vasc Surg 1996;24:957–962.

    Article  PubMed  CAS  Google Scholar 

  9. Pomposelli FB, Kansal N, Hamdan AD, Belfield A, Sheahan M, Campbell DR, et al. A decade of experience with dorsalis pedis artery bypass: analysis of outcome in more than 1000 cases. J Vasc Surg 2003;37:307–315.

    Article  PubMed  Google Scholar 

  10. Takeuchi K, Itoh H, Yonemitsu Y, Matsumoto T, Kume M, Komori K, et al. In vivo reduction of the nuclear factor-kappaB activity using synthetic cis-element decoy oligonucleotides suppresses intimal hyperplasia in the injured carotid arteries in rabbits. Surg Today 2007;377:575–583.

    Article  Google Scholar 

  11. Shibata R, Kai H, Seki Y, Kato S, Morimatsu M, Kaibuchi K, et al. Role of Rho-associated kinase in neointima formation after vascular injury. Circulation 2001;103:284–289.

    PubMed  CAS  Google Scholar 

  12. Matsumoto Y, Uwatoku T, Oi K, Abe K, Hattori T, Morishige K, et al. Long-term inhibition of Rho-kinase suppresses neointimal formation after stent implantation in porcine coronary arteries: involvement of multiple mechanisms. Arterioscler Thromb Vasc Biol 2004;24:181–186.

    Article  PubMed  CAS  Google Scholar 

  13. Davies MG, Hagen PO. Pathobiology of intimal hyperplasia. Br J Surg 1994;81:1254–1269.

    Article  PubMed  CAS  Google Scholar 

  14. Ishida M, Komori K, Yonemitsu Y, Taguchi K, Onohara T, Sugimachi K. Immunohistochemical phenotypic alterations of rabbit autologous vein grafts implanted under arterial circulation with or without poor distal runoff — implications of vein graft remodeling. Atherosclerosis 2001;154:345–354.

    Article  PubMed  CAS  Google Scholar 

  15. Komori K, Inoguchi H, Kume M, Shoji T, Furuyama T. Differences in endothelial function and morphologic modulation between canine autogenous venous and arterial grafts: endothelium and intimal thickening. Surgery 2002;131:S249–55.

    Article  PubMed  Google Scholar 

  16. Ishii T, Okadome K, Komori K, Odashiro T, Sugimachi K. Natural course of endothelium-dependent and -independent responses in autogenous femoral veins grafted into the arterial circulation of the dog. Circ Res 1993;72:1004–1010.

    PubMed  CAS  Google Scholar 

  17. Itoh H, Komori K, Funahashi S, Okadome K, Sugimachi K. Intimal hyperplasia of experimental autologous vein graft in hyperlipidemic rabbits with poor distal runoff. Atherosclerosis 1994;110:259–270.

    Article  PubMed  CAS  Google Scholar 

  18. Itoh H, Komori K, Onohara T, Funahashi S, Okadome K, Sugimachi K. Late graft failure of autologous vein grafts for arterial occlusive disease: clinical and experimental studies. Surg Today 1995;25;293–298.

    Article  PubMed  CAS  Google Scholar 

  19. Komori K, Yamamura S, Ishida M, Matsumoto T, Kuma S, Eguchi D, et al. Acceleration of impairment of endothelium-dependent responses under poor runoff conditions in canine autogenous vein grafts. Eur J Vasc Endovasc Surg 1997;14:475–481.

    Article  PubMed  CAS  Google Scholar 

  20. Morinaga K, Eguchi H, Miyazaki T, Okadome K, Sugimachi K. Development and regression of intimal thickening of arterially transplanted autologous vein grafts in dogs. J Vasc Surg 1987;5:719–730.

    Article  PubMed  CAS  Google Scholar 

  21. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993;329:2002–2012.

    Article  PubMed  CAS  Google Scholar 

  22. Lamas S, Marsden PA, Li GK, Tempst P, Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci USA 1992;89:6348–6352.

    Article  PubMed  CAS  Google Scholar 

  23. Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 2003;284:R1–12.

    PubMed  CAS  Google Scholar 

  24. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, et al. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 1998;101:2567–2578.

    Article  PubMed  CAS  Google Scholar 

  25. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 2003;9:1370–1376.

    Article  PubMed  CAS  Google Scholar 

  26. Hurt KJ, Musicki B, Palese MA, Crone JK, Becker RE, Moriarity JL, et al. Akt-dependent phosphorylation of endothelial nitricoxide synthase mediates penile erection. Proc Natl Acad Sci USA 2002;99:4061–4066.

    Article  PubMed  CAS  Google Scholar 

  27. Thomas GD, Zhang W, Victor RG. Nitric oxide deficiency as a cause of clinical hypertension: promising new drug targets for refractory hypertension. JAMA 2001;285:2055–2057.

    Article  PubMed  CAS  Google Scholar 

  28. Komori K, Gloviczki P, Bourchier RG, Miller VM, Vanhoutte PM. Endothelium-dependent vasorelaxations in response to aggregating platelets are impaired in reversed vein grafts. J Vasc Surg 1990;12:139–147.

    Article  PubMed  CAS  Google Scholar 

  29. Komori K, Schini VB, Gloviczki P, Bourchier RG, Vanhoutte PM. The impairment of endothelium-dependent relaxations in reversed vein grafts is associated with a reduced production of cyclic guanosine monophosphate. J Vasc Surg 1991;14:67–75.

    Article  PubMed  CAS  Google Scholar 

  30. Davies MG, Hagen PO. Pathophysiology of vein graft failure: a review. Eur J Vasc Endovasc Surg 1995;9:7–18.

    Article  PubMed  Google Scholar 

  31. Kon ND, Hansen KJ, Martin MB, Meredith JW, Meredith JH, Cordell AR. Surgery 1984;96:870–873.

    PubMed  CAS  Google Scholar 

  32. Kohler TR, Kaufman JL, Kacoyanis G, Clowes A, Donaldson MC, Kelly E, et al. Effect of aspirin and dipyridamole on the patency of lower extremity bypass grafts. Surgery 1984;96:462–466.

    PubMed  CAS  Google Scholar 

  33. Furchgott RF. Role of endothelium in responses of vascular smooth muscle. Circ Res 1983;53:557–573.

    PubMed  CAS  Google Scholar 

  34. Moncada S, Higgs EA. Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest 1991;21:361–374.

    Article  PubMed  CAS  Google Scholar 

  35. Leung T, Manser E, Tan L, Lim L. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem 1995;270:29051–29054.

    Article  PubMed  CAS  Google Scholar 

  36. Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, et al. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J 1996;15:1885–1893.

    PubMed  CAS  Google Scholar 

  37. Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, et al. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J 1996;15:2208–2216.

    PubMed  CAS  Google Scholar 

  38. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 1996;273:245–248.

    Article  PubMed  CAS  Google Scholar 

  39. Kaibuchi K, Kuroda S, Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 1999;68:459–486.

    Article  PubMed  CAS  Google Scholar 

  40. Fukata Y, Amano M, Kaibuchi K. Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci 2001;22:32–39.

    Article  PubMed  CAS  Google Scholar 

  41. Riento K, Ridley AJ. Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 2003;4:446–456.

    Article  PubMed  CAS  Google Scholar 

  42. Nakayama M, Amano M, Katsumi A, Kaneko T, Kawabata S, Takefuji M, et al. Rho-kinase and myosin II activities are required for cell type and environment specific migration. Genes Cells 2005;10:107–117.

    Article  PubMed  CAS  Google Scholar 

  43. Wettschureck N, Offermanns S. Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J Mol Med 2002;80:629–638.

    Article  PubMed  CAS  Google Scholar 

  44. Shimokawa H, Takeshita A. Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol 2005;25:1767–1775.

    Article  PubMed  CAS  Google Scholar 

  45. Rikitake Y, Liao JK. ROCKs as therapeutic targets in cardiovascular diseases. Expert Rev Cardiovasc Ther 2005;3:441–451.

    Article  PubMed  CAS  Google Scholar 

  46. Laufs U, Liao JK. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem 1998;273:24266–24271.

    Article  PubMed  CAS  Google Scholar 

  47. Eto M, Barandier C, Rathgeb L, Kozai T, Joch H, Yang Z, et al. Thrombin suppresses endothelial nitric oxide synthase and upregulates endothelin-converting enzyme-1 expression by distinct pathways: role of Rho/ROCK and mitogen-activated protein kinase. Circ Res 2001;89:583–590.

    Article  PubMed  CAS  Google Scholar 

  48. Ming XF, Viswambharan H, Barandier C, Ruffieux J, Kaibuchi K, Rusconi S, et al. Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol Cell Biol 2002;22:8467–8477.

    Article  PubMed  CAS  Google Scholar 

  49. Wolfrum S, Dendorfer A, Rikitake Y, Stalker TJ, Gong Y, Scalia R, et al. Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection. Arterioscler Thromb Vasc Biol 2004;24:1842–1847.

    Article  PubMed  CAS  Google Scholar 

  50. Sugimoto M, Nakayama M, Goto TM, Amano M, Komori K, Kaibuchi K. Rho-kinase phosphorylates eNOS at threonine 495 in endothelial cells. Biochem Biophys Res Commun 2007;361:462–467.

    Article  PubMed  CAS  Google Scholar 

  51. Furuyama T, Komori K, Shimokawa H, Matsumoto Y, Uwatoku T, Hirano K, et al. Long-term inhibition of Rho kinase suppresses intimal thickening in autologous vein grafts in rabbits. J Vasc Surg 2006;43:1249–1256.

    Article  PubMed  Google Scholar 

  52. Kalra M, Miller VM. Early remodeling of saphenous vein grafts: proliferation, migration and apoptosis of adventitial and medial cells occur simultaneously with changes in graft diameter and blood flow. J Vasc Res 2000;37:576–584.

    Article  PubMed  CAS  Google Scholar 

  53. Davies MG, Fulton GJ, Svendsen E, Hagen PO. Time course of the regression of intimal hyperplasia in experimental vein grafts. Cardiovasc Pathol 1999;8:161–168.

    Article  PubMed  CAS  Google Scholar 

  54. Okazaki J, Komori K, Kawasaki K, Eguchi D, Ishida M, Sugimachi K. l-Arginine inhibits smooth muscle cell proliferation of vein graft intimal thickness in hypercholesterolemic rabbits. Cardiovasc Res 1997;36:429–436.

    Article  PubMed  CAS  Google Scholar 

  55. Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med 1996;335:1001–1009.

    Article  PubMed  CAS  Google Scholar 

  56. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994;344:1383–1389.

  57. Laufs U, La Fata V, Plutzky J, Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 1998;97:1129–1135.

    PubMed  CAS  Google Scholar 

  58. Harris MB, Blackstone MA, Sood SG, Li C, Goolsby JM, Venema VJ, et al. Acute activation and phosphorylation of endothelial nitric oxide synthase by HMG-CoA reductase inhibitors. Am J Physiol Heart Circ Physiol 2004;287:H560–H566.

    Article  PubMed  CAS  Google Scholar 

  59. Endres M, Laufs U. Effects of statins on endothelium and signaling mechanisms. Stroke 2004;35:2708–2711.

    Article  PubMed  CAS  Google Scholar 

  60. Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, Sessa WC, et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 2000;6:1004–1010.

    Article  PubMed  CAS  Google Scholar 

  61. Yamanouchi D, Banno H, Nakayama M, Sugimoto M, Fujita H, Kobayashi M, et al. Hydrophilic statin suppresses vein graft intimal hyperplasia via endothelial cell-tropic Rho-kinase inhibition. J Vasc Surg 2005;42:757–764.

    Article  PubMed  Google Scholar 

  62. Hattori K, Yamanouchi D, Banno H, Kobayashi M, Yamamoto K, Kajikuri J, et al. Celiprolol reduces the intimal thickening of autogenous vein grafts via an enhancement of nitric oxide function through an inhibition of superoxide production. J Vasc Surg 2007;46:116–123.

    Article  PubMed  Google Scholar 

  63. Hayashi T, Sumi D, Juliet PA, Matsui-Hirai H, Asai-Tanaka Y, Kano H, et al. Gene transfer of endothelial NO synthase, but not eNOS plus inducible NOS, regressed atherosclerosis in rabbits. Cardiovasc Res 2004;61:339–351.

    Article  PubMed  CAS  Google Scholar 

  64. Yonemitsu Y, Kaneda Y, Morishita R, Nakagawa K, Nakashima Y, Sueishi K. Characterization of in vivo gene transfer into the arterial wall mediated by the Sendai virus (hemagglutinating virus of Japan) liposomes: an effective tool for the in vivo study of arterial diseases. Lab Invest 1996;75:313–323.

    PubMed  CAS  Google Scholar 

  65. Matsumoto T, Komori K, Yonemitsu Y, Morishita R, Sueishi K, Kaneda Y, et al. Hemagglutinating virus of Japan-liposome-mediated gene transfer of endothelial cell nitric oxide synthase inhibits intimal hyperplasia of canine vein grafts under conditions of poor runoff. J Vasc Surg 1998;27:135–144.

    Article  PubMed  CAS  Google Scholar 

  66. Ohta S, Komori K, Yonemitsu Y, Onohara T, Matsumoto T, Sugimachi K. Intraluminal gene transfer of endothelial cell-nitric oxide synthase suppresses intimal hyperplasia of vein grafts in cholesterol-fed rabbit: a limited biological effect as a result of the loss of medial smooth muscle cells. Surgery 2002;131:644–653.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugimoto, M., Yamanouchi, D. & Komori, K. Therapeutic approach against intimal hyperplasia of vein grafts through endothelial nitric oxide synthase/nitric oxide (eNOS/NO) and the Rho/Rho-kinase pathway. Surg Today 39, 459–465 (2009). https://doi.org/10.1007/s00595-008-3912-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-008-3912-6

Key words

Navigation