Skip to main content

Advertisement

Log in

Silencing lncRNA GAS5 alleviates apoptosis and fibrosis in diabetic cardiomyopathy by targeting miR-26a/b-5p

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Background

LncRNA GAS5 is associated with high glucose-induced cardiomyocyte injury, but its role in diabetic cardiomyopathy (DCM) remains unclear.

Methods

Mice were administered with streptozotocin to construct the diabetic model (DM). Primary mouse cardiomyocytes were isolated and treated with 30 mmol/L high glucose to mimic the diabetic condition in vitro. GAS5 expression was detected by quantitative reverse transcription polymerase chain reaction. The relationship between GAS5 and miR-26a/b-5p was determined by bioinformatic prediction, luciferase reporter assay and RNA immunoprecipitation assay. The cardiac function of diabetic mice was evaluated by two-dimensional echocardiography.

Results

GAS5 was significantly upregulated in diabetic cardiomyopathy both in vitro and in vivo. GAS5 knockdown and miR-26a/b-5p overexpression not only effectively attenuated myocardial fibrosis of diabetic mice in vivo but also inhibited high glucose-induced cardiomyocyte injury in vitro. miR-26a/b-5p was identified as a target of GAS5. GAS5 knockdown efficiently attenuated myocardial fibrosis and high glucose-induced cardiomyocyte injury through negatively regulating miR-26a/b-p.

Conclusion

Our study showed that GAS5 promotes DCM progression by regulating miR-26a/b-5p, suggesting that GAS5 might be a potential therapeutic target for DCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dillmann WH (2019) Diabetic cardiomyopathy. Circ Res 124:1160–1162. https://doi.org/10.1161/circresaha.118.314665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Marcinkiewicz A, Ostrowski S, Drzewoski J (2017) Can the onset of heart failure be delayed by treating diabetic cardiomyopathy? Diabetol Metab Syndr 9:21. https://doi.org/10.1186/s13098-017-0219-z

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tan Y, Zhang Z (2020) Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat Rev Cardiol 17:585–607. https://doi.org/10.1038/s41569-020-0339-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moran VA, Perera RJ, Khalil AM (2012) Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res 40:6391–6400. https://doi.org/10.1093/nar/gks296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sallam T, Sandhu J, Tontonoz P (2018) Long noncoding RNA discovery in cardiovascular disease: decoding form to function. Circ Res 122:155–166. https://doi.org/10.1161/circresaha.117.311802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goustin AS, Thepsuwan P, Kosir MA, Lipovich L (2019) The growth-arrest-specific (GAS)-5 long non-coding RNA: a fascinating lncRNA widely expressed in cancers. Non-coding RNA. https://doi.org/10.3390/ncrna5030046

    Article  PubMed  PubMed Central  Google Scholar 

  7. Simion V, Haemmig S, Feinberg MW (2019) LncRNAs in vascular biology and disease. Vascul Pharmacol 114:145–156. https://doi.org/10.1016/j.vph.2018.01.003

    Article  CAS  PubMed  Google Scholar 

  8. Zheng S, Li M (2020) lncRNA GAS5-promoted apoptosis in triple-negative breast cancer by targeting miR-378a-5p/SUFU signaling. J Cell Biochem. 121:2225–2235. https://doi.org/10.1002/jcb.29445

    Article  CAS  PubMed  Google Scholar 

  9. Zhao J, Liu B, Li C (2020) Knockdown of long noncoding RNA GAS5 protects human cardiomyocyte-like AC16 cells against high glucose-induced inflammation by inhibiting miR-21-5p-mediated TLR4/NF-κB signaling. Naunyn Schmiedebergs Arch Pharmacol 393:1541–1547. https://doi.org/10.1007/s00210-019-01795-z

    Article  CAS  PubMed  Google Scholar 

  10. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang X, Li X, Lin Q, Xu Q (2019) Up-regulation of microRNA-203 inhibits myocardial fibrosis and oxidative stress in mice with diabetic cardiomyopathy through the inhibition of PI3K/Akt signaling pathway via PIK3CA. Gene. https://doi.org/10.1016/j.gene.2019.143995

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu D, Zhang X, Chen X, Yang S, Chen H (2020) Inhibition of miR-223 attenuates the NLRP3 inflammasome activation, fibrosis, and apoptosis in diabetic cardiomyopathy. Life Sci. https://doi.org/10.1016/j.lfs.2020.117980

    Article  PubMed  PubMed Central  Google Scholar 

  13. Miyamoto K et al (2016) Tumour-suppressive miRNA-26a-5p and miR-26b-5p inhibit cell aggressiveness by regulating PLOD2 in bladder cancer. Br J Cancer 115:354–363. https://doi.org/10.1038/bjc.2016.179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin Y, Jian Z (2020) Long non-coding RNA DLGAP1-AS1 facilitates tumorigenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via the feedback loop of miR-26a/b-5p/IL-6/JAK2/STAT3 and Wnt/β-catenin pathway. Cell Death Dis 11:34. https://doi.org/10.1038/s41419-019-2188-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu DH et al (2020) Analysis of the interaction network of hub miRNAs-hub genes, being involved in idiopathic pulmonary fibers and its emerging role in non-small cell lung cancer. Front Genet 11:302. https://doi.org/10.3389/fgene.2020.00302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shangguan Y, Han J, Su H (2020) GAS5 knockdown ameliorates apoptosis and inflammatory response by modulating miR-26b-5p/Smad1 axis in cerebral ischaemia/reperfusion injury. Behav Brain Res. https://doi.org/10.1016/j.bbr.2019.112370

    Article  PubMed  Google Scholar 

  17. Chang Z, Yan G, Zheng J, Liu Z (2020) The lncRNA GAS5 inhibits the osteogenic differentiation and calcification of human vascular smooth muscle cells. Calcif Tissue Int 107:86–95. https://doi.org/10.1007/s00223-020-00696-1

    Article  CAS  PubMed  Google Scholar 

  18. Japp AG, Gulati A, Cook SA, Cowie MR, Prasad SK (2016) The diagnosis and evaluation of dilated cardiomyopathy. J Am Coll Cardiol 67:2996–3010. https://doi.org/10.1016/j.jacc.2016.03.590

    Article  PubMed  Google Scholar 

  19. Palomer X, Pizarro-Delgado J, Vázquez-Carrera M (2018) Emerging actors in diabetic cardiomyopathy: heartbreaker biomarkers or therapeutic targets? Trends Pharmacol Sci 39:452–467. https://doi.org/10.1016/j.tips.2018.02.010

    Article  CAS  PubMed  Google Scholar 

  20. Zhou X et al (2017) lncRNA MIAT functions as a competing endogenous RNA to upregulate DAPK2 by sponging miR-22-3p in diabetic cardiomyopathy. Cell Death Dis. https://doi.org/10.1038/cddis.2017.321

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhou X, Feng Y, Zhan Z, Chen J (2014) Hydrogen sulfide alleviates diabetic nephropathy in a streptozotocin-induced diabetic rat model. J Biol Chem 289:28827–28834. https://doi.org/10.1074/jbc.M114.596593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu HL, Chen CH, Sun YJ (2019) Overexpression of lncRNA GAS5 attenuates cardiac fibrosis through regulating PTEN/MMP-2 signal pathway in mice. Eur Rev Med Pharmacol Sci 23:4414–4418. https://doi.org/10.26355/eurrev_201905_17949

    Article  PubMed  Google Scholar 

  23. Zhou X, An G, Lu X (2015) Hydrogen sulfide attenuates the development of diabetic cardiomyopathy. Clin Sci 128:325–335. https://doi.org/10.1042/cs20140460

    Article  CAS  Google Scholar 

  24. Wang L, Wang Y, Yang T, Guo Y, Sun T (2015) Angiotensin-converting enzyme 2 attenuates bleomycin-induced lung fibrosis in mice. Cell Phys Biochem Int J Experiment Cell Phys Biochem Pharmacol 36:697–711. https://doi.org/10.1159/000430131

    Article  CAS  Google Scholar 

  25. Hu X et al (2017) Pathophysiological fundamentals of diabetic cardiomyopathy. Compr Physiol 7:693–711. https://doi.org/10.1002/cphy.c160021

    Article  PubMed  Google Scholar 

  26. Hershberger RE, Hedges DJ, Morales A (2013) Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol 10:531–547. https://doi.org/10.1038/nrcardio.2013.105

    Article  CAS  PubMed  Google Scholar 

  27. Xu Y et al (2020) LncRNA GAS5 inhibits NLRP3 inflammasome activation-mediated pyroptosis in diabetic cardiomyopathy by targeting miR-34b-3p/AHR. Cell Cycle 19:3054–3065. https://doi.org/10.1080/15384101.2020.1831245

    Article  CAS  PubMed  Google Scholar 

  28. Yang F et al (2018) Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy. Cell Death Dis 9:1000. https://doi.org/10.1038/s41419-018-1029-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qi Y et al (2020) LncRNA-MIAT-mediated miR-214-3p silencing is responsible for IL-17 production and cardiac fibrosis in diabetic cardiomyopathy. Front Cell Develop Biol 8:243. https://doi.org/10.3389/fcell.2020.00243

    Article  Google Scholar 

  30. Zhang L et al (2016) Early administration of trimetazidine attenuates diabetic cardiomyopathy in rats by alleviating fibrosis, reducing apoptosis and enhancing autophagy. J Transl Med 14:109. https://doi.org/10.1186/s12967-016-0849-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang W et al (2020) LncRNA GAS5 exacerbates renal tubular epithelial fibrosis by acting as a competing endogenous RNA of miR-96–5p. Biomed Pharm Biomed Pharm 121:109411. https://doi.org/10.1016/j.biopha.2019.109411

    Article  CAS  Google Scholar 

  32. Dong Z et al (2019) lncRNA GAS5 restrains CCl(4)-induced hepatic fibrosis by targeting miR-23a through the PTEN/PI3K/Akt signaling pathway. Am J Phys Gas Liver Phys 316:539–550. https://doi.org/10.1152/ajpgi.00249.2018

    Article  Google Scholar 

  33. Lin CY et al (2018) LncRNA GAS5-AS1 inhibits myofibroblasts activities in oral submucous fibrosis. J Form Med Assoc Taiwan yi zhi 117:727–733. https://doi.org/10.1016/j.jfma.2017.09.012

    Article  CAS  Google Scholar 

  34. Tang R et al (2020) LncRNA GAS5 attenuates fibroblast activation through inhibiting Smad3 signaling. Am J Physiol Cell Physiol 319:C105-c115. https://doi.org/10.1152/ajpcell.00059.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu Y et al (2020) Long noncoding RNA-GAS5 retards renal fibrosis through repressing miR-21 activity. Exp Mol Pathol. https://doi.org/10.1016/j.yexmp.2020.104518

    Article  PubMed  Google Scholar 

  36. Wu N et al (2019) Down-regulation of GAS5 ameliorates myocardial ischaemia/reperfusion injury via the miR-335/ROCK1/AKT/GSK-3β axis. J Cell Mol Med 23:8420–8431. https://doi.org/10.1111/jcmm.14724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xie C, Wu W, Tang A, Luo N, Tan Y (2019) lncRNA GAS5/miR-452-5p reduces oxidative stress and pyroptosis of high-glucose-stimulated renal tubular cells. Diab Metabol Synd Obesity Targets Therapy 12:2609–2617. https://doi.org/10.2147/dmso.s228654

    Article  CAS  Google Scholar 

  38. Du J, Yang ST, Liu J, Zhang KX, Leng JY (2019) Silence of LncRNA GAS5 protects cardiomyocytes H9c2 against hypoxic injury via sponging miR-142-5p. Mol Cells 42:397–405. https://doi.org/10.14348/molcells.2018.0180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu W, Liu X, Han L (2019) Apoptosis of cardiomyocytes in diabetic cardiomyopathy involves overexpression of glycogen synthase kinase-3β. Biosci Rep. https://doi.org/10.1042/bsr20171307

  40. Huang Z et al (2019) MiR-26a-5p enhances cells proliferation, invasion, and apoptosis resistance of fibroblast-like synoviocytes in rheumatoid arthritis by regulating PTEN/PI3K/AKT pathway. Biosci Rep. https://doi.org/10.1042/bsr20182192

  41. Jia CM, Tian YY, Quan LN, Jiang L, Liu AC (2018) miR-26b-5p suppresses proliferation and promotes apoptosis in multiple myeloma cells by targeting JAG1. Pathol Res Pract 214:1388–1394. https://doi.org/10.1016/j.prp.2018.07.025

    Article  CAS  PubMed  Google Scholar 

  42. Wang Y et al (2016) Regulation of proliferation, angiogenesis and apoptosis in hepatocellular carcinoma by miR-26b-5p. Tumour Biol 37:10965–10979. https://doi.org/10.1007/s13277-016-4964-7

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

CZ, HZ: study concepts, literature research, clinical studies, data analysis, experimental studies, manuscript writing and review; DW: study design, literature research, experimental studies and manuscript editing; ZS: definition of intellectual content, clinical studies, data acquisition and statistical analysis.

Corresponding author

Correspondence to Haijun Zhang.

Ethics declarations

Conflict of interest

All other authors have no conflicts of interest.

Ethical approval

This study was approved by the Animal Ethics Committee of the First Hospital of Qiqihar & Affiliated Qiqihar Hospital, Southern Medical University and conducted following the Announcement of Helsinki and laboratory guidelines of research in China.

Additional information

Managed by Massimo Porta.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Zhang, H., Wei, D. et al. Silencing lncRNA GAS5 alleviates apoptosis and fibrosis in diabetic cardiomyopathy by targeting miR-26a/b-5p. Acta Diabetol 58, 1491–1501 (2021). https://doi.org/10.1007/s00592-021-01745-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-021-01745-3

Keywords

Navigation