Skip to main content

Advertisement

Log in

Metagenomic analysis reveals gestational diabetes mellitus-related microbial regulators of glucose tolerance

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Recent studies have suggested a possible association between microbiota and gestational diabetes (GDM). However, the results are inconsistent. Our objective was to investigate further the relationship between GDM and microbiota and verify the potential microbial marker.

Methods

Two complementary approaches were used for the demonstration. First, we compared the gut microbial composition of 23 GDM patients and 26 non-GDM ethnically Chinese Han pregnant women, by using whole-metagenome shotgun sequencing of their stool samples collected at the third trimester. Second, we used Q-PCR (quantitative polymerase chain reaction) to evaluate the gut microbial composition in the stool samples from another cohort of 150 Chinese pregnant women (113 Control and 37 GDM), to further confirm the potential microbial marker.

Results

The gut microbiota of GDM women show lower albeit not statistically significant (p = 0.18) alpha diversity at the species level than non-GDM women. However, the species-level beta-diversity or between-sample diversity measured by Bray–Curtis distance shows significant differences (p < 2.2e−16) between the two groups. The species Bacteroides dorei positively correlated with both OGTT (oral glucose tolerance test) 0-Hour (p = 0.0099) and OGTT 1-Hour (p = 0.0070). There is a similar trend between Bacteroides sp. 3_1_33FAA and both OGTT 0-Hour (p = 0.014) and OGTT 1-Hour (p = 0.0101) response variables. The species Alistipes putredinis negatively correlated with OGTT 1-Hour (p = 0.0172) and OGTT 2-Hour (p = 0.0147). Q-PCR validation further confirmed the association between the glucose tolerance loci of Bacteroides dorei and OGTT response.

Conclusions

Gut microbiome is related to the diabetic status of Chinese women during pregnancy. Specific species such as Bacteroides dorei associate with glucose response and could be potential monitoring and therapeutic microbial markers for GDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

All sequencing data underlying this work’s contributions will be made freely available.

Abbreviations

GDM:

Gestational diabetes mellitus

GTT:

Oral glucose tolerance test

RNA:

Ribonucleic acid

Q-PCR:

Quantitative polymerase chain reaction

ADA:

American Diabetes Association

DNA:

Deoxyribonucleic acid

USA:

United States of America

LefSe:

Linear discriminant analysis effect size tool

PERMANOVA:

Permutational multivariate analysis of variance

CPM:

Counts-per-million

IGV:

Integrative Genomics Viewer

BWA:

Burrows–Wheeler Aligner

ACTB:

Human beta-actin

PCoA:

Principal coordinate analysis

LDA:

Linear discriminant analysis

rRNA:

Ribosomal ribonucleic acid

EMP:

Embden–Meyerhof–Parnas pathway

PPP:

Pentose phosphate pathway

acetyl CoA:

Acetyl coenzyme A

OGTT-1-Pos:

Loci positively associated with OGTT 1-Hour response

SCFA:

Short-chain fatty acids

References

  1. Di Cianni G et al (2003) Intermediate metabolism in normal pregnancy and in gestational diabetes. Diabetes Metab Res Rev 19(4):259–270

    Article  PubMed  CAS  Google Scholar 

  2. Metzger BE, Coustan DR (1998) Summary and recommendations of the fourth international workshop-conference on gestational diabetes mellitus. The organizing committee. Diabetes Care 21(Suppl 2):B161–B167

    PubMed  Google Scholar 

  3. Group H.S.C.R. et al (2008) Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 358(19):1991–2002

    Article  Google Scholar 

  4. Jensen DM et al (2001) Clinical impact of mild carbohydrate intolerance in pregnancy: a study of 2904 nondiabetic Danish women with risk factors for gestational diabetes mellitus. Am J Obstet Gynecol 185(2):413–419

    Article  CAS  PubMed  Google Scholar 

  5. Crowther CA et al (2005) Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N Engl J Med 352(24):2477–2486

    Article  CAS  PubMed  Google Scholar 

  6. Landon MB et al (2007) The National Institute of Child Health and Human Development Maternal-Fetal Medicine Unit Network randomized clinical trial in progress: standard therapy versus no therapy for mild gestational diabetes. Diabetes Care 30(Suppl 2):S194–S199

    Article  PubMed  Google Scholar 

  7. WHO (2013) Diagnostic Criteria and classification of hyperglycaemia first detected in pregnancy, in WHO Guidelines Approved by the guidelines review committee. WHO, Geneva

    Google Scholar 

  8. Dickens LT, Thomas CC (2019) Updates in gestational diabetes prevalence, treatment, and health policy. Curr Diabetes Rep 19(6):33

    Article  Google Scholar 

  9. Fadl H et al (2014) Gestational diabetes mellitus and later cardiovascular disease: a Swedish population based case–control study. BJOG 121(12):1530–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Farrar D et al (2016) Hyperglycaemia and risk of adverse perinatal outcomes: systematic review and meta-analysis. BMJ 354:i4694

    Article  PubMed  PubMed Central  Google Scholar 

  11. Boney CM et al (2005) Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115(3):e290–e296

    Article  PubMed  Google Scholar 

  12. Lawlor DA, Lichtenstein P, Langstrom N (2011) Association of maternal diabetes mellitus in pregnancy with offspring adiposity into early adulthood: sibling study in a prospective cohort of 280,866 men from 248,293 families. Circulation 123(3):258–265

    Article  PubMed  PubMed Central  Google Scholar 

  13. Page KA et al (2014) Gestational diabetes mellitus, maternal obesity, and adiposity in offspring. J Pediatr 164(4):807–810

    Article  PubMed  Google Scholar 

  14. Sears C, Hivert MF (2015) Examination of pathways linking maternal glycemia during pregnancy and increased risk for type 2 diabetes in offspring. Can J Diabetes 39(6):443–444

    Article  PubMed  Google Scholar 

  15. Koren O et al (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150(3):470–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Crusell MKW et al (2018) Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome 6(1):89

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang J et al (2018) Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut 67(9):1614–1625

    Article  CAS  PubMed  Google Scholar 

  18. Fugmann M et al (2015) The stool microbiota of insulin resistant women with recent gestational diabetes, a high risk group for type 2 diabetes. Sci Rep 5:13212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu J et al (2013) Diversified microbiota of meconium is affected by maternal diabetes status. PLoS ONE 8(11):e78257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Virtanen SM et al (2014) Microbial exposure in infancy and subsequent appearance of type 1 diabetes mellitus-associated autoantibodies: a cohort study. JAMA Pediatr 168(8):755–763

    Article  PubMed  Google Scholar 

  21. Sevelsted A et al (2015) Cesarean section and chronic immune disorders. Pediatrics 135(1):e92–e98

    Article  PubMed  Google Scholar 

  22. Kronman MP et al (2012) Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics 130(4):e794–e803

    Article  PubMed  PubMed Central  Google Scholar 

  23. Oksanen JB, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H, Oksanen MJ (2013) Package ‘vegan’. Community ecology Package, Version 2(9)

  24. Abubucker S et al (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8(6):e1002358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Robinson JT et al (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Benson DA et al (2015) GenBank. Nucleic Acids Res 43(Database):D30–D35

    Article  CAS  PubMed  Google Scholar 

  27. Human Microbiome Project. Human Microbiome Project. 2016 [cited 2016]. http://hmpdacc.org/

  28. Peng Y et al (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11):1420–1428

    Article  CAS  PubMed  Google Scholar 

  29. Zhu W, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38(12):e132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Fu L et al (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huerta-Cepas J et al (2017) Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol 34(8):2115–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Towns J et al (2014) XSEDE: accelerating scientific discovery. Comput Sci Eng 16(5):62–74

    Article  CAS  Google Scholar 

  33. Kanehisa M et al (2019) New approach for understanding genome variations in KEGG. Nucleic Acids Res 47(D1):D590–D595

    Article  CAS  PubMed  Google Scholar 

  34. Bairoch A (2000) The ENZYME database in 2000. Nucleic Acids Res 28(1):304–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Davis-Richardson AG et al (2014) Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Front Microbiol 5:678

    Article  PubMed  PubMed Central  Google Scholar 

  36. El Kaoutari A et al (2013) The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nat Rev Microbiol 11(7):497–504

    Article  PubMed  CAS  Google Scholar 

  37. Giongo A et al (2011) Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 5(1):82–91

    Article  CAS  PubMed  Google Scholar 

  38. Karlsson FH et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498(7452):99–103

    Article  CAS  PubMed  Google Scholar 

  39. Matsuzaki T et al (1997) Prevention of onset in an insulin-dependent diabetes mellitus model, NOD mice, by oral feeding of Lactobacillus casei. APMIS 105(8):643–649

    Article  CAS  PubMed  Google Scholar 

  40. Matsuzaki T et al (1997) Antidiabetic effects of an oral administration of Lactobacillus casei in a non-insulin-dependent diabetes mellitus (NIDDM) model using KK-Ay mice. Endocr J 44(3):357–365

    Article  CAS  PubMed  Google Scholar 

  41. Mejia-Leon ME et al (2014) Fecal microbiota imbalance in Mexican children with type 1 diabetes. Sci Rep 4:3814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qin J et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60

    Article  CAS  PubMed  Google Scholar 

  43. Roesch LF et al (2009) Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model. ISME J 3(5):536–548

    Article  CAS  PubMed  Google Scholar 

  44. Vatanen T et al (2016) Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165(4):842–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu GD et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(6052):105–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu J et al (2015) Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. ISME J 9(3):552–562

    Article  PubMed  Google Scholar 

  47. Le Chatelier E et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546

    Article  PubMed  CAS  Google Scholar 

  48. Chiu CD et al (2012) Investigation of the effect of hyperglycemia on intracerebral hemorrhage by proteomic approaches. Proteomics 12(1):113–123

    Article  CAS  PubMed  Google Scholar 

  49. Ravcheev DA et al (2013) Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks. BMC Genom 14:873

    Article  Google Scholar 

  50. Mokkala K et al (2017) Gut microbiota aberrations precede diagnosis of gestational diabetes mellitus. Acta Diabetol 54(12):1147–1149

    Article  PubMed  Google Scholar 

  51. Spegel P et al (2013) Time-resolved metabolomics analysis of beta-cells implicates the pentose phosphate pathway in the control of insulin release. Biochem J 450(3):595–605

    Article  CAS  PubMed  Google Scholar 

  52. Patra KC, Hay N (2014) The pentose phosphate pathway and cancer. Trends Biochem Sci 39(8):347–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tilg H, Moschen AR (2014) Microbiota and diabetes: an evolving relationship. Gut 63(9):1513–1521

    Article  CAS  PubMed  Google Scholar 

  54. Angelakis E et al (2012) The relationship between gut microbiota and weight gain in humans. Future Microbiol 7(1):91–109

    Article  PubMed  Google Scholar 

  55. Hahnke S et al (2015) Complete genome sequence of the novel Porphyromonadaceae bacterium strain ING2-E5B isolated from a mesophilic lab-scale biogas reactor. J Biotechnol 193:34–36

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by computational resources of the Zhongshan Ophthalmic Center and the Tianhe-2 supercomputer and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562. The XSEDE resources of the Pittsburgh Supercomputing Center’s Bridges system under the allocation TG-MCB190095 supported the computational analysis of P. W. Bible. The authors would like to thank Dr. Andrew Sand of Butler University for providing essential computational assistance.

Funding

The study was supported by Natural Science of Guangdong Province, China (2015A030313198), Youth Cultivation Project of Sun Yat-sen University, China (17ykpy24), Clinical Medical Project 5010 of Sun Yat-sen University, China (2012004), and the National Natural Science Foundation of China (81771606, 81571452).

Author information

Authors and Affiliations

Authors

Contributions

YW collected and processed the clinical samples and analyzed and interpreted the data and wrote the manuscript. PWB wrote the manuscript and processed, analyzed, and interpreted the data. SL, WM, WD, and YL collected and processed the clinical samples. XW processed the clinical samples and performed the experiments. XL and XD processed the clinical samples. YD performed the experiments. SG carried out metagenomic sequencing experiments. CLD contributed to pathway analysis and discussion and wrote the manuscript. LW designed the study and supervised the data analysis and interpretation. HC designed the study and supervised the clinical sample collection and data interpretation. ZW designed the study and supervised the clinical sample collection and data interpretation.

Corresponding authors

Correspondence to Lai Wei, Haitian Chen or Zilian Wang.

Ethics declarations

Conflict of interest

The authors confirm that no conflicts of interest exist.

Consent for publication

All authors have read and approved the manuscript.

Ethics approval and consent to participate

This study was approved by the research ethics committee of the First Affiliated Hospital, Sun Yat-sen University (Protocol: No. 187, 2016), and was conducted in accordance with the principles of the Declaration of Helsinki.

Informed consent

Informed consent was obtained from all patients and healthy volunteers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the topical collection "Gut Microbiome and Metabolic Disorders" managed by Massimo Federici.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Neighbor joining tree of Bacteroides 16S RNA genes. The 16S RNA genes of common Bacteroides species are analyzed by sequence similarity. Values indicate neighbor-joining branch length. Smaller values indicate smaller divergence from neighboring branches. (PNG 74 kb)

Table S1

Functional Metagenomic Pathways showing differential abundance between GDM and healthy mothers. Pathways discovered using HUMANN2 software were statistically assessed for differential abundance. Mean normalized counts per million are reported for each cohort. P values are based on a Mann–Whitney–Wilcoxon test. (XLSX 9 kb)

Table S2

Associations between species abundance and clinical variables. Associations between clinical variables and species abundances across all patients were assessed using Spearman’s nonparametric correlation tests. All significant associations at p < 0.05 are reported. (XLSX 51 kb)

Table S3

Complete list of specifically enriched EC pathways from the GDM (DM) catalog. This catalog lists the p value and pathway information for all specially enriched EC functions associated with the GDM catalog. (CSV 180 kb)

Table S4

Complete list of specifically enriched EC pathways from the non-GDM (PG) catalog. This catalog lists the p value and pathway information for all specially enriched EC functions associated with the non-GDM catalog. (CSV 98 kb)

Table S5

Complete list of specifically enriched KEGG pathways from the GDM (DM) catalog. This catalog lists the p value and pathway information for all specially enriched KEGG ortholog functions associated with the GDM catalog. (CSV 87 kb)

Table S6

Complete list of specifically enriched KEGG pathways from the non-GDM (DM) catalog. This catalog lists the p value and pathway information for all specially enriched KEGG functions associated with the non-GDM catalog. (CSV 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Bible, P.W., Long, S. et al. Metagenomic analysis reveals gestational diabetes mellitus-related microbial regulators of glucose tolerance. Acta Diabetol 57, 569–581 (2020). https://doi.org/10.1007/s00592-019-01434-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-019-01434-2

Keywords

Navigation