Skip to main content
Log in

Changes in innate and adaptive immunity over the first year after the onset of type 1 diabetes

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

The development of the immune phenotype in patients with type 1 diabetes (T1D) during the first year following disease onset remains poorly described, and studies analysing the longitudinal development of a complex set of immunological and metabolic parameters are missing. Thus, we aim to provide such complex view in a cohort of 38 children with new onset T1D who were prospectively followed for 1 year.

Methods

All subjects were tested for a set of immunological parameters (complete blood count; serum immunoglobulins; and T, B and dendritic cells), HbA1c and daily insulin dose at baseline and at 6 and 12 months after T1D diagnosis. A mixed meal tolerance test was administered to each of the subjects 12 months after diagnosis, and the C-peptide area under the curve (AUC) was noted and was then tested for association with all immunological parameters.

Results

A gradual decrease in leukocytes (adjusted p = 0.0012) was reflected in a significant decrease in neutrophils (adjusted p = 0.0061) over the post-onset period, whereas Tregs (adjusted p = 0.0205) and originally low pDCs (adjusted p < 0.0001) increased. The expression of the receptor for BAFF (BAFFR) on B lymphocytes (adjusted p = 0.0127) markedly increased after onset. No immunological parameters were associated with C-peptide AUC; however, we observed a linear increase in C-peptide AUC with the age of the patients (p < 0.0001).

Conclusions

Our study documents substantial changes in the innate and adaptive immune system over the first year after disease diagnosis but shows no association between immunological parameters and residual beta-cell activity. The age of patients remains the best predictor of C-peptide AUC, whereas the role of the immune system remains unresolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADA:

American Diabetes Association

ANOVA:

Analysis of variance

AUC:

Area under curve

BAFFR:

B-cell activating factor receptor

BE:

Base excess

BMI:

Body mass index

CD:

Cluster of differentiation

ELISA:

Enzyme-linked immunosorbent assay

GAD65:

Glutamate decarboxylase isoform 65

HbA1c:

Haemoglobin A1C

IA2:

Islet antigen 2

IAA:

Insulin autoantibodies

IFCC:

International Federation of Clinical Chemistry

IFNγ:

Interferon γ

IDAA1c:

Insulin dose-adjusted HbA1c

mDC:

Myeloid dendritic cell

MFI:

Mean fluorescence intensity

MMTT:

Mixed meal tolerance test

PBMC:

Peripheral blood mononuclear cell

pDC:

Plasmacytoid dendritic cell

PMA:

Phorbol myristate acetate

SD:

Standard deviation

T1D:

Type 1 diabetes

TDD:

Total daily insulin dose

Treg:

T regulatory lymphocyte

Th17:

T-helper 17 lymphocytes

Th1:

T-helper 1 lymphocytes

ZnT8:

Zinc transporter 8

References

  1. Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet 383:69–82. https://doi.org/10.1016/S0140-6736(13)60591-7

    Article  PubMed  Google Scholar 

  2. Keenan HA, Sun JK, Levine J et al (2010) Residual insulin production and pancreatic ß-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes 59:2846–2853. https://doi.org/10.2337/db10-0676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Greenbaum CJ, Beam CA, Boulware D et al (2012) Fall in C-peptide during first 2 years from diagnosis: evidence of at least two distinct phases from composite type 1 diabetes TrialNet data. Diabetes 61:2066–2073. https://doi.org/10.2337/db11-1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arif S, Leete P, Nguyen V et al (2014) Blood and islet phenotypes indicate immunological heterogeneity in type 1 diabetes. Diabetes 63:3835–3845. https://doi.org/10.2337/db14-0365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krogvold L, Wiberg A, Edwin B et al (2016) Insulitis and characterisation of infiltrating T cells in surgical pancreatic tail resections from patients at onset of type 1 diabetes. Diabetologia 59:492–501. https://doi.org/10.1007/s00125-015-3820-4

    Article  CAS  PubMed  Google Scholar 

  6. Willcox A, Richardson SJ, Bone AJ et al (2009) Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol 155:173–181. https://doi.org/10.1111/j.1365-2249.2008.03860.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Oras A, Peet A, Giese T et al (2019) A study of 51 subtypes of peripheral blood immune cells in newly diagnosed young type 1 diabetes patients. Clin Exp Immunol. https://doi.org/10.1111/cei.13332

    Article  PubMed  Google Scholar 

  8. Valle A, Giamporcaro GM, Scavini M et al (2013) Reduction of circulating neutrophils precedes and accompanies type 1 diabetes. Diabetes 62:2072–2077. https://doi.org/10.2337/db12-1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Diana J, Simoni Y, Furio L et al (2013) Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat Med 19:65–73. https://doi.org/10.1038/nm.3042

    Article  CAS  PubMed  Google Scholar 

  10. Antonelli A, Fallahi P, Ferrari SM et al (2008) Serum Th1 (CXCL10) and Th2 (CCL2) chemokine levels in children with newly diagnosed Type 1 diabetes: A longitudinal study. Diabet Med 25:1349–1353. https://doi.org/10.1111/j.1464-5491.2008.02577.x

    Article  CAS  PubMed  Google Scholar 

  11. Pfleger C, Kaas A, Hansen L et al (2008) Relation of circulating concentrations of chemokine receptor CCR5 ligands to C-peptide, proinsulin and HbA1c and disease progression in type 1 diabetes. Clin Immunol 128:57–65. https://doi.org/10.1016/j.clim.2008.03.458

    Article  CAS  PubMed  Google Scholar 

  12. Nurten E, Vogel M, Michael Kapellen T et al (2018) Omentin-1 and NAMPT serum concentrations are higher and CK-18 levels are lower in children and adolescents with type 1 diabetes when compared to healthy age, sex and BMI matched controls. J Pediatr Endocrinol Metab 31:959–969. https://doi.org/10.1515/jpem-2018-0353

    Article  CAS  PubMed  Google Scholar 

  13. Fitas AL, Martins C, Borrego LM et al (2018) Immune cell and cytokine patterns in children with type 1 diabetes mellitus undergoing a remission phase: a longitudinal study. Pediatr Diabetes 19:963–971

    Article  CAS  Google Scholar 

  14. Moya R, Robertson HK, Payne D et al (2016) A pilot study showing associations between frequency of CD4+memory cell subsets at diagnosis and duration of partial remission in type 1 diabetes. Clin Immunol 166–167:72–80. https://doi.org/10.1016/j.clim.2016.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. ADA (2019) 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes. Diabetes Care 42:S13–S28. https://doi.org/10.2337/dc19-S002

    Article  Google Scholar 

  16. Petruzelkova L, Ananieva-Jordanova R, Vcelakova J et al (2014) The dynamic changes of zinc transporter 8 autoantibodies in Czech children from the onset of Type 1 diabetes mellitus. Diabet Med 31:165–171. https://doi.org/10.1111/dme.12308

    Article  CAS  PubMed  Google Scholar 

  17. Mortensen HB, Hougaard P, Swift P et al (2009) New definition for the partial remission period in children and adolescents with type 1 diabetes. Diabetes Care 32:1384–1390. https://doi.org/10.2337/dc08-1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bloomfield M, Kanderová V, Paračková Z et al (2018) Utility of ruxolitinib in a child with chronic mucocutaneous candidiasis caused by a novel STAT1 gain-of-function mutation. J Clin Immunol 38:589–601. https://doi.org/10.1007/s10875-018-0519-6

    Article  CAS  PubMed  Google Scholar 

  19. Parackova Z, Kayserova J, Danova K et al (2016) T regulatory lymphocytes in type 1 diabetes: Impaired CD25 expression and IL-2 induced STAT5 phosphorylation in pediatric patients. Autoimmunity 49:523–531. https://doi.org/10.1080/08916934.2016.1217998

    Article  CAS  PubMed  Google Scholar 

  20. Kayserova J, Vcelakova J, Stechova K et al (2014) Decreased dendritic cell numbers but increased TLR9-mediated interferon-alpha production in first degree relatives of type 1 diabetes patients. Clin Immunol 153:49–55. https://doi.org/10.1016/j.clim.2014.03.018

    Article  CAS  PubMed  Google Scholar 

  21. Klocperk A, Mejstříková E, Kayserová J et al (2015) Low marginal zone-like B lymphocytes and natural antibodies characterize skewed B-lymphocyte subpopulations in del22q11 DiGeorge patients. Clin Immunol 161:144–149

    Article  CAS  Google Scholar 

  22. Vuckovic S, Withers G, Harris M et al (2007) Decreased blood dendritic cell counts in type 1 diabetic children. Clin Immunol 123:281–288. https://doi.org/10.1016/j.clim.2007.03.002

    Article  CAS  PubMed  Google Scholar 

  23. Thompson WS, Pekalski ML, Simons HZ et al (2014) Multi-parametric flow cytometric and genetic investigation of the peripheral B cell compartment in human type 1 diabetes. Clin Exp Immunol 177:571–585. https://doi.org/10.1111/cei.12362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Deng C, Xiang Y, Tan T et al (2016) Altered peripheral B-lymphocyte subsets in type 1 diabetes and latent autoimmune diabetes in adults. Diabetes Care 39:434–440. https://doi.org/10.2337/dc15-1765

    Article  CAS  PubMed  Google Scholar 

  25. Kumar P, Natarajan K, Shanmugam N (2014) High glucose driven expression of pro-inflammatory cytokine and chemokine genes in lymphocytes: Molecular mechanisms of IL-17 family gene expression. Cell Signal 26:528–539. https://doi.org/10.1016/j.cellsig.2013.11.031

    Article  CAS  PubMed  Google Scholar 

  26. Han XQ, Gong ZJ, Xu SQ et al (2014) Advanced glycation end products promote differentiation of CD4+T helper cells toward pro-inflammatory response. J Huazhong Univ Sci Technol Med Sci 34:10–17. https://doi.org/10.1007/s11596-014-1224-1

    Article  CAS  PubMed  Google Scholar 

  27. Dáňová K, Grohová A, Strnadová P et al (2017) Tolerogenic dendritic cells from poorly compensated type 1 diabetes patients have decreased ability to induce stable antigen-specific T Cell hyporesponsiveness and generation of suppressive regulatory T cells. J Immunol 198:729–740. https://doi.org/10.4049/jimmunol.1600676

    Article  CAS  PubMed  Google Scholar 

  28. Mathieu C, Lahesmaa R, Bonifacio E et al (2018) Immunological biomarkers for the development and progression of type 1 diabetes. Diabetologia 61:2252–2258. https://doi.org/10.1007/s00125-018-4726-8

    Article  CAS  PubMed  Google Scholar 

  29. Erener S, Marwaha A, Tan R et al (2017) Profiling of circulating microRNAs in children with recent onset of type 1 diabetes. JCI Insight 2:1–13. https://doi.org/10.1172/jci.insight.89656

    Article  Google Scholar 

  30. Olsen JA, Kenna LA, Spelios MG et al (2016) Circulating differentially methylated amylin DNA as a biomarker of β-cell loss in type 1 diabetes. PLoS ONE 11:1–15. https://doi.org/10.1371/journal.pone.0152662

    Article  CAS  Google Scholar 

  31. Vecchio F, Lo Buono N, Stabilini A et al (2018) Abnormal neutrophil signature in the blood and pancreas of presymptomatic and symptomatic type 1 diabetes. JCI Insight 3:1–17. https://doi.org/10.1172/JCI.INSIGHT.122146

    Article  Google Scholar 

  32. Newby BN, Brusko TM, Zou B et al (2017) Type 1 interferons potentiate human CD8+ T-cell cytotoxicity through a STAT4- and Granzyme B-dependent pathway. Diabetes 66:3061–3071. https://doi.org/10.2337/db17-0106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Coppieters KT, Dotta F, Amirian N et al (2012) Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med 209:51–60. https://doi.org/10.1084/jem.20111187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Katz JD, Benoist C, Mathis D (1995) T helper cell subsets in insulin-dependent diabetes. Science 80(268):1185–1188. https://doi.org/10.5194/acp-14-1587-2014

    Article  CAS  Google Scholar 

  35. Knoop J, Gavrisan A, Kuehn D et al (2018) GM-CSF producing autoreactive CD4+ T cells in type 1 diabetes. Clin Immunol 188:23–30. https://doi.org/10.1016/j.clim.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  36. Lippens C, Duraes FV, Dubrot J et al (2016) IDO-orchestrated crosstalk between pDCs and Tregs inhibits autoimmunity. J Autoimmun 75:39–49. https://doi.org/10.1016/j.jaut.2016.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gehrie E, van der Touw W, Bromberg JS, Ochando JC (2011) Plasmacytoid dendritic cells in tolerance. Methods Mol Biol 677:127–147. https://doi.org/10.1007/978-1-60761-869-0_9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Beaudoin L, Diana J, Ghazarian L et al (2014) Plasmacytoid dendritic cells license regulatory T cells, upon iNKT-cell stimulation, to prevent autoimmune diabetes. Eur J Immunol 44:1454–1466. https://doi.org/10.1002/eji.201343910

    Article  CAS  PubMed  Google Scholar 

  39. Rodriguez-Segade S, Camiña MF, Carnero A et al (1996) High serum IgA concentrations in patients with diabetes mellitus: agewise distribution and relation to chronic complications. Clin Chem 42:1064–1067

    Article  CAS  Google Scholar 

  40. Smith WI, Rabin BS, Huellmantel A et al (1978) Immunopathology of juvenile-onset diabetes mellitus. I. IgA deficiency and juvenile diabetes Diabetes 27:1092–1097. https://doi.org/10.2337/diab.27.11.1092

    Article  PubMed  Google Scholar 

  41. De Goffau MC, Fuentes S, Van Den Bogert B et al (2014) Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 57:1569–1577. https://doi.org/10.1007/s00125-014-3274-0

    Article  CAS  PubMed  Google Scholar 

  42. Vatanen T, Franzosa EA, Schwager R et al (2018) The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562:589. https://doi.org/10.1038/s41586-018-0620-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leete P, Willcox A, Krogvold L et al (2016) Differential insulitic profiles determine the extent of β-cell destruction and the age at onset of type 1 diabetes. Diabetes 65:1362–1369. https://doi.org/10.2337/db15-1615

    Article  CAS  PubMed  Google Scholar 

  44. Barker A, Lauria A, Schloot N et al (2014) Age-dependent decline of β-cell function in type 1 diabetes after diagnosis: a multi-centre longitudinal study. Diabetes Obes Metab 16:262–267. https://doi.org/10.1111/dom.12216

    Article  CAS  PubMed  Google Scholar 

  45. Shields BM, McDonald TJ, Oram R et al (2018) C-peptide decline in type 1 diabetes has two phases: an initial exponential fall and a subsequent stable phase. Diabetes Care 41:1486–1492. https://doi.org/10.2337/dc18-0465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hao W, Gitelman S, Di Meglio LA et al (2016) Fall in C-peptide during first 4 years from diagnosis of type 1 diabetes: variable relation to age, HbA1c, and insulin dose. Diabetes Care 39:1664–1670. https://doi.org/10.2337/dc16-0360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Steck AK, Johnson K, Barriga KJ et al (2011) Age of islet autoantibody appearance and mean levels of insulin, but not GAD or IA-2 autoantibodies, predict age of diagnosis of type 1 diabetes: Diabetes autoimmunity study in the young. Diabetes Care 34:1397–1399. https://doi.org/10.2337/dc10-2088

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jacobsen LM, Larsson HE, Tamura RN et al (2019) Predicting progression to type 1 diabetes from ages 3 to 6 in islet autoantibody positive TEDDY children. Pediatr Diabetes 20:263–270. https://doi.org/10.1111/pedi.12812

    Article  CAS  PubMed  Google Scholar 

  49. Dabelea D, D’Agostino RB, Mayer-Davis EJ et al (2006) Testing the accelerator hypothesis: body size, beta-cell function, and age at onset of type 1 (autoimmune) diabetes. Diabetes Care 29:290–294

    Article  Google Scholar 

  50. Lorini R, Vanelli M (1996) Normal values of first-phase insulin response to intravenous glucose in healthy Italian children and adolescents. The Prediabetes Study Group of the Italian Society for Pediatric Endocrinology and Diabetology (SIEDP). J Pediatr Endocrinol Metab 9:163–167

    CAS  PubMed  Google Scholar 

  51. Bacha F, Klinepeter Bartz S (2016) Insulin resistance, role of metformin and other non-insulin therapies in pediatric type 1 diabetes. Pediatr Diabetes 17:545–558. https://doi.org/10.1111/pedi.12337

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded in part by a grant from the Czech Ministry of Health AZV 16-32838A and by the Institutional Support of Research Organization 00064203 (University Hospital Motol).

Author information

Authors and Affiliations

Authors

Contributions

AK and LP designed the study; produced, analysed and interpreted the data; and wrote the manuscript. MP performed the bioinformatical analysis. MR and JS performed the experiments and produced the data. JK designed the study. SP, SK and ZS provided patient material and co-wrote the manuscript. AS designed the study, interpreted the data and co-wrote the manuscript.

Corresponding author

Correspondence to Adam Klocperk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Ethics Committees of the University Hospital Motol and 2nd Faculty of Medicine, Charles University in Prague, Czech Republic) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Managed By Massimo Porta.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11286 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klocperk, A., Petruzelkova, L., Pavlikova, M. et al. Changes in innate and adaptive immunity over the first year after the onset of type 1 diabetes. Acta Diabetol 57, 297–307 (2020). https://doi.org/10.1007/s00592-019-01427-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-019-01427-1

Keywords

Navigation