Skip to main content

Advertisement

Log in

Hyperglycemia and 18F-FDG PET/CT, issues and problem solving: a literature review

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Positron emission tomography/computed tomography (PET/CT) is a standard procedure for imaging cancer commonly used in the clinical practice for several diseases, in particular for cancer staging, restaging, treatment monitoring and radiation therapy planning. Despite the availability of many radiotracers, 18F-fluoro-2-deoxy-2-d-glucose ([18F]FDG) is the most used. International PET/CT guidelines propose protocols for patients’ correct preparation before [18F]FDG injection, in particular with the regard of diabetic patients and therapy management. Hyperglycemic conditions and oral or insulin medication showed advantages and disadvantages on PET/CT scan accuracy: A correct knowledge of effects of these conditions on glucose metabolism assumes a fundamental role on patients management before [18F]FDG PET/CT scan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gallamini A, Zwarthoed C, Borra A (2014) Positron emission tomography in oncology. Cancers (Basel) 6:1821–1889

    Google Scholar 

  2. Ido T, Wan C, Casella J et al (1978) Labeled 2-deoxy-d-glucose analogs: 18F labeled 2-deoxy-2-fluoro-d-glucose, 2-deoxy-2-fluoro-d-mannose and 14C-2-deoxy-2-fluoro-d-glucose. J Label Compd Radiopharm 14:175–183

    CAS  Google Scholar 

  3. Warburg OP, Negelein E (1924) Uber den stoffwechsel der carcinomzelle. Biochem Z 152:309–335

    CAS  Google Scholar 

  4. Potter M, Newport E, Morten KJ (2016) The Warburg effect: 80 years on. Biochem Soc Trans 44:1499–1505

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen Z, Liu M, Li L, Chen L (2017) Involvement of the Warburg effect in non-tumor diseases processes. J Cell Physiol 2017:2839–2849

    Google Scholar 

  6. Larson SM (2006) 18 F-FDG imaging: molecular or functional? J Nucl Med 47:31N–32N

    Google Scholar 

  7. Pauwels E, Sturm E, Bombardieri E, Cleton F, Stokkel M (2000) Positron-emission tomography with [18F]fluoro-deoxy glucose, part 1. Biochemical uptake mechanism and its implication for clinical studies. J Cancer Res Clin Oncol 126:549–559

    CAS  PubMed  Google Scholar 

  8. Theorens B, Sarkar H, Kaback H, Lodish H (1988) Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell 55:281–290

    Google Scholar 

  9. Maher F (1995) Immunolocalization of GLUT1 and GLUT3 glucose transporters inprimary cultured neurons and glia. J Neurosci Res 42:459–469

    CAS  PubMed  Google Scholar 

  10. Rea S, James D (1997) Moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles. Diabetes 46:1667–1677

    CAS  PubMed  Google Scholar 

  11. Kayano T, Burant C, Fukumoto H, Gould G, Fan Y, Eddy R et al (1990) Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). J Biol Chem 265:13276–13282

    CAS  PubMed  Google Scholar 

  12. Brown R, Wahl R (1993) Over expression of glut-1 glucose transporter in human breast cancer: an immunohistochemical study. Cancer 72:2979–2985

    CAS  PubMed  Google Scholar 

  13. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T (1992) Fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33(11):1972–1980

    CAS  PubMed  Google Scholar 

  14. Mochizuki T, Tsukamoto E, Kuge Y, Kanegae K, Zhao S, Hikosaka K et al (2001) FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J Nucl Med 42(10):1551–1555

    CAS  PubMed  Google Scholar 

  15. Vaidyanathan S, Patel CN, Scarsbrook AF, Chowdhury FU (2015) FDG PET/CT in infection and inflammation—current and emerging clinical applications. Clin Radiol 70(7):787–800. https://doi.org/10.1016/j.crad.2015.03.010

    Article  CAS  PubMed  Google Scholar 

  16. Jamar F, Buscombe J, Chiti A, Christian P, Delbeke D, Donohoe K et al (2013) EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med 54(4):647–658

    PubMed  Google Scholar 

  17. Randle P, Garland P, Hales C, Newsholme E (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1(7285):785–789

    CAS  PubMed  Google Scholar 

  18. Szabo Z, Xia J, Mathews W, Brown P (2006) Future direction of renal PET. Semin Nucl Med 36(1):36–50

    PubMed  PubMed Central  Google Scholar 

  19. Moran JK, Lee HB, Blaufox MD (1999) Optimization of urinary FDG excretion during PET imaging. J Nucl Med 40(8):1352–1357

    CAS  PubMed  Google Scholar 

  20. Qiao H, Bai J, Chen Y, Tian J (2007) Kidney modelling for FDG excretion with PET. Int J Biomed Imaging 2007:1–4

    Google Scholar 

  21. Rosica D, Cheng SC, Hudson M, Sakellis C, Van Den Abbeele AD, Kim CK et al (2018) Effects of hyperglycemia on fluorine-18-fluorodeoxyglucose biodistribution in a large oncology clinical practice. Nucl Med Commun 39(5):417–422

    CAS  PubMed  Google Scholar 

  22. Wahl R, Henry C, Ethier S (1992) Serum glucose: effects on tumor and normal tissue accumulation of 2-[F-18]-fluoro-2-deoxy-d-glucose in rodents with mammary carcinoma. Radiology 183:643–647

    CAS  PubMed  Google Scholar 

  23. Diederichs C, Staib L, Glatting G, Beger H, Reske S (1998) FDG PET: elevated plasma glucose reduces both uptake and detection rate of pancreatic malignancies. J Nucl Med 39:1030–1033

    CAS  PubMed  Google Scholar 

  24. Juweid ME, Cheson BD (2006) Positron-emission tomography and assessment of cancer therapy. N Engl J Med 354:496–507

    CAS  PubMed  Google Scholar 

  25. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl_1):122S–150S

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Barrington SF, Kluge R (2017) FDG PET for therapy monitoring in Hodgkin and non-Hodgkin lymphomas. Eur J Nucl Med Mol Imaging 44(Suppl 1):S97–S110

    Google Scholar 

  27. Sprinz C, Zanon M, Altmayer S, Watte G, Irion K, Marchiori E et al (2018) Effects of blood glucose level on 18F fluorodeoxyglucose (18F-FDG) uptake for PET/CT in normal organs: an analysis on 5623 patients. Sci Rep 8(1):6–11

    Google Scholar 

  28. Büsing KA, Schönberg SO, Brade J, Wasser K (2013) Impact of blood glucose, diabetes, insulin, and obesity on standardized uptake values in tumors and healthy organs on 18F-FDG PET/CT. Nucl Med Biol 40(2):206–213. https://doi.org/10.1016/j.nucmedbio.2012.10.014

    Article  CAS  PubMed  Google Scholar 

  29. Eskian M, Alavi A, Khorasanizadeh M, Viglianti BL, Jacobsson H (2019) Effect of blood glucose level on standardized uptake value (SUV) in 18 F-FDG PET-scan: a systematic review and meta-analysis of 20, 807 individual SUV measurements. Eur J Nucl Med Mol Imaging 46:224–237

    CAS  PubMed  Google Scholar 

  30. Yang J, Wen J, Tian T, Lu Z, Wang Y, Wang Z et al (2017) GLUT-1 overexpression as an unfavorable prognostic biomarker in patients with colorectal cancer. Oncotarget 8(7):11788–11796

    PubMed  Google Scholar 

  31. Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202(3):654–662

    CAS  PubMed  Google Scholar 

  32. Carvalho K, Cunha I, Rocha R, Ayala F, Cajaiba M, Begnami M et al (2011) GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker. Clinics (Sao Paulo) 66:965–972

    Google Scholar 

  33. Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K et al (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36(12):2103–2110

    PubMed  Google Scholar 

  34. Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W et al (2014) FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 42(2):328–354

    PubMed  PubMed Central  Google Scholar 

  35. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA et al (2006) Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 47(5):885–895

    PubMed  Google Scholar 

  36. American College of Radiology (2016) ACR–SPR practice guideline for performing FDG-PET/CT in oncology. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/FDG-PET-CT.pdf

  37. Shankar L, Hoffman J, Bacharach S et al (2006) Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med 47:1059–1066

    CAS  PubMed  Google Scholar 

  38. Rena G, Hardie DG, Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60(9):1577–1585

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Martin J, Saleem N (2014) 18F-FDG PET-CT scanning and diabetic patients: what to do? Nucl Med Commun 35(12):1197–1203

    CAS  PubMed  Google Scholar 

  40. Massollo M, Marini C, Brignone M, Emionite L, Salani B, Riondato M et al (2013) Metformin temporal and localized effects on gut glucose metabolism assessed using 18F-FDG PET in mice. J Nucl Med 54(2):259–266. https://doi.org/10.2967/jnumed.112.106666

    Article  CAS  PubMed  Google Scholar 

  41. Gontier E, Fourme E, Wartski M, Blondet C, Bonardel G, Le Stanc E et al (2008) High and typical 18F-FDG bowel uptake in patients treated with metformin. Eur J Nucl Med Mol Imaging 35(1):95–99

    CAS  PubMed  Google Scholar 

  42. Lee SH, Jin S, Lee HS, Ryu JS, Lee JJ (2016) Metformin discontinuation less than 72 h is suboptimal for F-18 FDG PET/CT interpretation of the bowel. Ann Nucl Med 30(9):629–636

    CAS  PubMed  Google Scholar 

  43. Oh JR, Song HC, Chong A, Ha JM, Jeong SY, Min JJ et al (2010) Impact of medication discontinuation on increased intestinal FDG accumulation in diabetic patients treated with metformin. Am J Roentgenol 195(6):1404–1410

    Google Scholar 

  44. Huang S, Czech MP (2007) The GLUT4 glucose transporter. Cell Metab 5(4):237–252

    CAS  PubMed  Google Scholar 

  45. Bryant NJ, Govers R, James DE (2002) Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 3(4):267–277

    CAS  PubMed  Google Scholar 

  46. Surasi DS, Bhambhvani P, Baldwin JA, Almodovar SE, O’Malley JP (2014) 18F-FDG PET and PET/CT patient preparation: a review of the literature. J Nucl Med Technol 42(1):5–13. https://doi.org/10.2967/jnmt.113.132621

    Article  PubMed  Google Scholar 

  47. Turcotte E, Leblanc M, Carpentier A, Bénard F (2006) Optimization of whole-body positron emission tomography imaging by using delayed 2-deoxy-2-[F-18]fluoro-d-glucose injection following I. V. insulin in diabetic patients. Mol Imaging Biol 8(6):348–354

    PubMed  Google Scholar 

  48. Roy F-N, Beaulieu S, Boucher L, Bourdeau I, Cohade C (2009) Impact of intravenous insulin on 18F-FDG PET in diabetic cancer patients. J Nucl Med 50(2):178–183. https://doi.org/10.2967/jnumed.108.056283

    Article  PubMed  Google Scholar 

  49. Caobelli F, Pizzocaro C, Paghera B, Guerra UP (2013) Proposal for an optimized protocol for intravenous administration of insulin in diabetic patients undergoing 18F-FDG PET/CT. Nucl Med Commun 34(3):271–275

    CAS  PubMed  Google Scholar 

  50. Song HS, Yoon JK, Lee SJ, Yoon SH, Jo KS, An YS (2013) Ultrashort-acting insulin may improve on18F-FDG PET/CT image quality in patients with uncontrolled diabetic mellitus. Nucl Med Commun 34(6):527–532

    CAS  PubMed  Google Scholar 

  51. Garcia JR, Sanchis A, Juan J, Tomas J, Domenech A, Soler M et al (2014) Influence of subcutaneous administration of rapid-acting insulin in the quality of 18F-FDG PET/CT studies. Nucl Med Commun 35(5):459–465

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Francesca Paola Giunta Md for assistance with the English language and for comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Finessi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of human and animal rights

This article does not contain research involving human or animal subjects.

Informed consent

For this type of study formal consent is not required.

Additional information

Managed by Massimo Federici.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finessi, M., Bisi, G. & Deandreis, D. Hyperglycemia and 18F-FDG PET/CT, issues and problem solving: a literature review. Acta Diabetol 57, 253–262 (2020). https://doi.org/10.1007/s00592-019-01385-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-019-01385-8

Keywords

Navigation