Skip to main content

Advertisement

Log in

Soluble ST2 is a biomarker for cardiovascular mortality related to abnormal glucose metabolism in high-risk subjects

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Inflammation plays a role in the development and progression of type 2 diabetes macroangiopathy. Interleukin 33 (IL-33) drives production of Th2-associated cytokines. The soluble form of suppression of tumorigenicity 2 (sST2) acting as a decoy receptor blocks IL-33 and tones down Th2 inflammatory response. We investigated the role of sST2 as a predictor of CV and all-cause mortality in a cohort of patients affected by established atherosclerotic disease.

Methods

399 patients with atherosclerotic disease from the Tor Vergata Atherosclerosis Registry performed follow-up every year by phone interview. The primary endpoint was cardiovascular death and the secondary endpoint was death for any other disease.

Results

sST2 plasma levels were significantly increased from normal glucose-tolerant patients to patients with history of type 2 diabetes (p < 0.00001). Levels of sST2 were significantly correlated with fasting plasma glucose (R = 0.16, p = 0.002), HbA1c (R = 0.17, p = 0.002), and HOMA (R = 0.16, p = 0.004). Dividing patients in tertiles of sST2 levels, those belonging to the highest tertile showed an increased rate of all-cause and cardiovascular mortality, (all-cause mortality p = 0.045 and CVD mortality p = 0.02). A multivariate Cox analysis revealed that sST2 increased the risk in cardiovascular mortality per SD by hazard ratio 1.050 (95% CI 1.006–1.097, p = 0.025) after adjustment for age and hs-CRP while it did not significantly change the risk for all-cause mortality.

Conclusions

High circulating level of sST2 is associated to increased CVD mortality and markers of metabolic dysfunction in subjects with atherosclerotic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization (2015) Cardiovascular diseases (CVDs) Fact sheet No 317. Internet. http://www.who.int/mediacentre/factsheets/ fs317/en/. Accessed 17 Dec 2015

  2. Wang CCL, Hess CN, Hiatt WR, Goldfine AB (2016) Atherosclerotic cardiovascular disease and heart failure in type 2 diabetes—mechanisms, management, and clinical considerations. Circulation 133(24):2459–2502. https://doi.org/10.1161/CIRCULATIONAHA.116.022194

    Article  CAS  Google Scholar 

  3. Nicholls SJ, Tuzcu EM, Kalidindi S et al (2008) Effect of diabetes on progression of coronary atherosclerosis and arterial remodeling: a pooled analysis of 5 intravascular ultrasound trials. J Am Coll Cardiol 52:255–262

    Article  PubMed  CAS  Google Scholar 

  4. Kappel BA, Marx N, Federici M (2015) Oral hypoglycemic agents and the heart failure conundrum: lessons from and for outcome trials. Nutr Metab Cardiovasc Dis 25(8):697–705. https://doi.org/10.1016/j.numecd.2015.06.006

    Article  PubMed  CAS  Google Scholar 

  5. Stöhr R, Federici M (2013) Insulin resistance and atherosclerosis: convergence between metabolic pathways and inflammatory nodes. Biochem J 454(1):1–11. https://doi.org/10.1042/BJ20130121

    Article  PubMed  CAS  Google Scholar 

  6. Rizza S, Cardellini M, Piciucchi G et al (2018) Brachial flow-mediated dilation predicts glycemia worsening in normoglycemic young subjects. Acta Diabetol 55(4):387–389. https://doi.org/10.1007/s00592-018-1108-0

    Article  PubMed  Google Scholar 

  7. Chattopadhyay S, George A, John J, Sathyapalan T (2018) Two-hour post-challenge glucose is a better predictor of adverse outcome after myocardial infarction than fasting or admission glucose in patients without diabetes. Acta Diabetol 55(5):449–458. https://doi.org/10.1007/s00592-018-1114-2

    Article  PubMed  CAS  Google Scholar 

  8. Schmitz J et al (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–490

    Article  PubMed  CAS  Google Scholar 

  9. Kakkar R, Lee RT (2008) The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nat Rev Drug Discov 7(10):827–840. https://doi.org/10.1038/nrd2660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hayakawa H, Hayakawa M, Kume A, Tominaga S (2007) Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J Biol Chem 282:26369–26380

    Article  PubMed  CAS  Google Scholar 

  11. Moulin D et al (2007) Interleukin (IL)-33 induces the release of pro-inflammatory mediators by mast cells. Cytokine 40:216–225

    Article  PubMed  CAS  Google Scholar 

  12. Wynn TA (2004) Fibrotic disease and the TH1/TH2 paradigm. Nat Rev Immunol 4:583–594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Investig 117:524–529

    Article  PubMed  CAS  Google Scholar 

  14. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT (2007) IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Investig 117:1538–1549

    Article  PubMed  CAS  Google Scholar 

  15. Parikh RH, Seliger SL, Christenson R et al (2016) Soluble ST2 for prediction of heart failure and cardiovascular death in an elderly, community-dwelling population. J Am Heart Assoc 5:e003188. https://doi.org/10.1161/JAHA.115.003188

    Article  PubMed  PubMed Central  Google Scholar 

  16. Boman K, Thormark Fröst F, Bergman ACR, Olofsson M (2018) NTproBNP and ST2 as predictors for all-cause and cardiovascular mortality in elderly patients with symptoms suggestive for heart failure. Biomarkers. https://doi.org/10.1080/1354750X.2018.1431692

    Article  PubMed  Google Scholar 

  17. AbouEzzeddine OF, McKie PM, Dunlay SM et al (2017) Suppression of tumorigenicity 2 in heart failure with preserved ejection fraction. J Am Heart Assoc 6:e004382. https://doi.org/10.1161/JAHA.116.004382

    Article  PubMed  PubMed Central  Google Scholar 

  18. van Vark LC, Lesman-Leegte I, Baart SJ et al (2017) Prognostic value of serial ST2 measurements in patients with acute heart failure. JACC 19:2378–2388

    Article  CAS  Google Scholar 

  19. Aimo A, Vergaro G, Passino C et al (2017) Prognostic value of soluble suppression of tumorigenicity-2 in chronic heart failure: a meta-analysis. J Am Coll Cardiol Heart Fail 5:280–286

    Google Scholar 

  20. Yancy CW, Jessup M, Bozkurt B et al (2017) 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol 70:776–803

    Article  PubMed  Google Scholar 

  21. Cardellini M, Farcomeni A, Ballanti M et al (2017) C-peptide: a predictor of cardiovascular mortality in subjects with established atherosclerotic disease. Diabetes Vasc Dis Res 14(5):395–399. https://doi.org/10.1177/1479164117710446

    Article  CAS  Google Scholar 

  22. American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Supplement 1):S81–S90. https://doi.org/10.2337/dc14-S081

    Article  Google Scholar 

  23. Miller AM, Asquith DL, Hueber AJ et al (2010) Interleukin-33 induces protective effects in adipose tissue inflammation during obesity in mice. Circ Res 107(5):650–658. https://doi.org/10.1161/CIRCRESAHA.110.218867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bapat SP, Suh JM, Fang S et al (2015) Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 528(7580):137–141. https://doi.org/10.1038/nature16151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Miller AM, Purves D, McConnachie A, Asquith DL, Batty GD (2012) Soluble ST2 associates with diabetes but not established cardiovascular risk factors: a new inflammatory pathway of relevance to diabetes? PLoS One 7(10):e47830. https://doi.org/10.1371/journal.pone.0047830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Fousteris E, Melidonis A, Panoutsopoulos G et al (2011) Toll/interleukin-1 receptor member ST2 exhibits higher soluble levels in type 2 diabetes, especially when accompanied with left ventricular diastolic dysfunction. Cardiovasc Diabetol 10:101. https://doi.org/10.1186/1475-2840-10-101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. McCarthy CP, Januzzi JL Jr (2018) Soluble ST2 in heart failure. Heart Fail Clin 14(1):41–48 https://doi.org/10.1016/j.hfc.2017.08.005 (Review)

    Article  PubMed  Google Scholar 

  28. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie ANJ, Lee RT (2007) IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Investig 117:1538–1549

    Article  PubMed  CAS  Google Scholar 

  29. Seki K, Sanada S, Kudinova AY et al (2009) Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ Heart Fail 2:684e–691e

    Article  CAS  Google Scholar 

  30. Miller AM, Xu D, Asquith DL et al (2008) IL-33 reduces the development of atherosclerosis. J Exp Med 205(2):339–346. https://doi.org/10.1084/jem.20071868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

M. F. research was in part funded by EU-FP7 FLORINASH (Health-F2-2009-241913), Ministry of University (MIUR) Progetti di Ricerca di Interesse Nazionale (PRIN) protocol number 2015MPESJS_004, Ministry of Health Ricerca Finalizzata RF-2011-02349921, Fondazione Roma call for Non-Communicable Diseases NCD 2014 Call; M.C: is funded by University of Tor Vergata Mission Sustainability program no. E81I18000390005.

Author information

Authors and Affiliations

Authors

Contributions

MC and AF performed statistical analysis, interpreted results and generated figures and tables. MF, MC and AF wrote the manuscript. MB, MM, FD, IC, GG, SR, VG, OP, CP, RM, and AI performed experiments. All authors discussed the data and commented on the manuscript before submission.

Corresponding author

Correspondence to Massimo Federici.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethics approval

The study was approved by the ethics committee of the Policlinico Tor Vergata in Rome, Italy. All the procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the principles of the Declaration of Helsinki as revised in 2000.

Informed consent

An informed written consent was obtained from all participants.

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Managed by Massimo Porta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardellini, M., Rizza, S., Casagrande, V. et al. Soluble ST2 is a biomarker for cardiovascular mortality related to abnormal glucose metabolism in high-risk subjects. Acta Diabetol 56, 273–280 (2019). https://doi.org/10.1007/s00592-018-1230-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-018-1230-z

Keywords

Navigation