Skip to main content
Log in

Glucose-independent association of adiposity and diet composition with cardiovascular risk in children and adolescents with type 1 diabetes

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

To test the hypothesis that diet composition, adiposity and glycometabolic control could independently contribute to an increase in the cardiovascular risk (CVR) for children/adolescents with type 1 diabetes (T1D).

Methods

One hundred and eighty children/adolescents with T1D (age range 5–18 years) were enrolled. Diet (3-day weighed dietary record), physical (height, weight, waist circumference, bioelectrical impedance analysis) and biochemical (HbA1c, lipid profile) parameters were recorded. Regression models, using non-HDL cholesterol (a gross index of CVR) as the dependent variable and HbA1c (mmol/mol), fat mass (FM) %, lipid-to-carbohydrate intake ratio as independent ones, were calculated.

Results

Non-HDL cholesterol was significantly associated with adiposity (FM%; r = 0.27, 95% CI 0.13–0.43), body fat distribution (waist-to-height ratio; r = 0.16, 95% CI 0.02–0.31), lipid intake [% of energy intake (EI)] (r = 0.25, 95% CI 0.11–0.41), carbohydrate intake (% EI; r = −0.24, 95% CI 0.10–0.40), lipid-to-carbohydrate intake ratio (r = 0.26, 95% CI 0.12–0.42) and blood glucose control (HbA1c; r = 0.24, 95% CI 0.10–0.40). A p value cutoff of 0.10 was used for covariates to be included in the regression analysis. Multiple regression analysis showed that adiposity (FM%), blood glucose control (HbA1c) and lipid-to-carbohydrate intake ratio independently contributed to explaining the inter-individual variability of non-HDL cholesterol (R 2 = 0.163, p < 0.05).

Conclusions

Adiposity and lipid-to-carbohydrate intake ratio affect non-HDL cholesterol, a gross index of CVR, regardless of HbA1c, in children and adolescents with T1D. Intervention to reduce CVR in T1D patients should focus not only on glycometabolic control but also on adiposity and diet composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CVR:

Cardiovascular risk

BIA:

Bioelectrical impedance analysis

FM:

Fat mass

EI:

Energy intake

CVD:

Cardiovascular disease

MDI:

Multiple daily injection

CSII:

Continuous subcutaneous insulin infusion

BMI:

Body mass index

WC:

Waist circumference

WHtR:

Waist-to-height ratio

SBP:

Systolic blood pressure

DBP:

Diastolic blood pressure

TG:

Triglycerides

HDL:

High-density lipoprotein

LDL:

Low-density lipoprotein

ANOVA:

Analysis of variance

PAL:

Physical activity level

References

  1. Lind M, Svensson AM, Kosiborod M et al (2014) Glycemic control and excess mortality in T1D. N Engl J Med 371(21):1972–1982

    Article  PubMed  Google Scholar 

  2. De Ferranti SD, De Boer IH, Fonseca V et al (2014) T1D mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Diabetes Care 37(10):2843–2863

    Article  PubMed  PubMed Central  Google Scholar 

  3. Erqou S, Lee CT, Suffoletto M et al (2013) Association between glycated haemoglobin and the risk of congestive heart failure in diabetes mellitus: systematic review and meta-analysis. Eur J Heart Fail 15(2):185–193

    Article  CAS  PubMed  Google Scholar 

  4. Expert Panel on Integrated Guidelines for Cardiovascular Health, and Risk Reduction in Children and Adolescents, National Heart, Lung, and Blood Institute (2011) Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics 128(Suppl 5):S213–S256

    Google Scholar 

  5. Van Bussel BC, Soedamah-Muthu SS, Henry RM et al (2013) Unhealthy dietary patterns associated with inflammation and endothelial dysfunction in T1D: the EURODIAB study. Nutr Metab Cardiovasc Dis. 23(8):758–764

    Article  PubMed  Google Scholar 

  6. Valerio G, Iafusco D, Zucchini S, Maffeis C, Study-Group on Diabetes of Italian Society of Pediatric Endocrinology and Diabetology [ISPED] (2012) Abdominal adiposity and cardiovascular risk factors in adolescents with T1D. Diabetes Res Clin Pract 97(1):99–104

    Article  PubMed  Google Scholar 

  7. Gorst C, Kwok CS, Aslam S et al (2015) Long-term glycemic variability and risk of adverse outcomes: a systematic review and meta-analysis. Diabetes Care 38(12):2354–2369

    Article  CAS  PubMed  Google Scholar 

  8. Marzona I, Avanzini F, Lucisano G et al (2017) Are all people with diabetes and cardiovascular risk factors or microvascular complications at very high risk? Findings from the Risk and Prevention Study. Acta Diabetol 54:123–131

    Article  PubMed  Google Scholar 

  9. Tadic M, Cuspidi C, Vukomanovic V et al (2016) The influence of type 2 diabetes and arterial hypertension on right ventricular layer-specific mechanics. Acta Diabetol 53:791–797

    Article  CAS  PubMed  Google Scholar 

  10. Third Report of the National Cholesterol Education Program [NCEP] (2002) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults [adult treatment panel III] final report. Circulation 106:3143–3421

    Google Scholar 

  11. Sniderman A, McQueen M, Contois J, Williams K, Furberg CD (2010) Why is non-high-density lipoprotein cholesterol a better marker of the risk of vascular disease than low-density lipoprotein cholesterol? J Clin Lipidol 4:152–155

    Article  PubMed  Google Scholar 

  12. Cui Y, Blumenthal RS, Flaws JA et al (2001) Non-high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Arch Intern Med 161:1413–1419

    Article  CAS  PubMed  Google Scholar 

  13. Schwab KO, Doerfer J, Hungele A et al (2015) Non-high-density lipoprotein cholesterol in children with diabetes: proposed treatment recommendations based on glycemic control, body mass index, age, sex, and generally accepted cut points. J Pediatr 167:1436–1439

    Article  PubMed  Google Scholar 

  14. Catapano AL, Graham I, De Backer G et al (2016) ESC/EAS Guidelines for the management of dyslipidaemias. Eur Heart J 37:2999–3058. doi:10.1093/eurheartj/ehw272

    Article  PubMed  Google Scholar 

  15. Piepoli F, Hoes AW, Agewall S et al (2016) European guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. doi:10.1093/eurheartj/ehw106

    Google Scholar 

  16. Nioi P, Sigurdsson A, Thorleifsson G et al (2016) Variant ASGR1 associated with a reduced risk of coronary artery disease. N Engl J Med 374(22):2131–2141

    Article  CAS  PubMed  Google Scholar 

  17. Appannah G, Pot GK, Huang RC et al (2015) Identification of a dietary pattern associated with greater cardiometabolic risk in adolescence. Nutr Metab Cardiovasc Dis 25(7):643–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guasch-Ferré M, Babio N, Martínez-González MA et al (2015) Dietary fat intake and risk of cardiovascular disease and all-cause mortality in a population at high risk of cardiovascular disease. Am J Clin Nutr 102(6):1563–1573

    Article  PubMed  Google Scholar 

  19. Hooper L, Martin N, Abdelhamid A, Davey Smith G (2015) Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev (6):CD011737. doi:10.1002/14651858.CD011737

  20. Salerno A, Fragasso G, Esposito A et al (2015) Effects of short-term manipulation of serum FFA concentrations on left ventricular energy metabolism and function in patients with heart failure: no association with circulating bio-markers of inflammation. Acta Diabetol 52:753–761

    Article  CAS  PubMed  Google Scholar 

  21. Nupponen M, Pahkala K, Juonala M et al (2015) Metabolic syndrome from adolescence to early adulthood: effect of infancy-onset dietary counseling of low saturated fat: the Special Turku Coronary Risk Factor Intervention Project [STRIP]. Circulation 131(7):605–613

    Article  CAS  PubMed  Google Scholar 

  22. Katz ML, Mehta S, Nansel T, Quinn H, Lipsky LM, Laffel LM (2014) Associations of nutrient intake with glycemic control in youth with T1D: differences by insulin regimen. Diabetes Technol Ther 16(8):512–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maffeis C, Morandi A, Ventura E et al (2012) Diet, physical, and biochemical characteristics of children and adolescents with T1D: relationship between dietary fat and glucose control. Pediatr Diabetes 13(2):137–146

    Article  CAS  PubMed  Google Scholar 

  24. Delahanty LM, Nathan DM, Lachin JM et al (2009) Diabetes control and complications trial/epidemiology of diabetes. Association of diet with glycated hemoglobin during intensive treatment of T1D in the Diabetes Control and Complications Trial. Am J Clin Nutr 89(2):518–524

    Article  CAS  PubMed  Google Scholar 

  25. Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC (2010) Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med 362(6):485–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park MH, Falconer C, Viner RM, Kinra S (2012) The impact of childhood obesity on morbidity and mortality in adulthood: a systematic review. Obes Rev 13(11):985–1000

    Article  CAS  PubMed  Google Scholar 

  27. Lipsky LM, Gee B, Liu A, Nansel TR (2015) Body mass index and adiposity indicators associated with cardiovascular biomarkers in youth with type 1 diabetes followed prospectively. Pediatr Obes. doi:10.1111/ijpo.12167

    Google Scholar 

  28. Redondo MJ, Foster NC, Libman IM et al (2016) Prevalence of cardiovascular risk factors in youth with type 1 diabetes and elevated body mass index. Acta Diabetol 53(2):271–277. doi:10.1007/s00592-015-0785-1

    Article  CAS  PubMed  Google Scholar 

  29. Mäkinen VP, Forsblom C, Thorn LM et al (2008) Metabolic phenotypes, vascular complications, and premature deaths in a population of 4197 patients with T1D. Diabetes 57(9):2480–2487

    Article  PubMed  PubMed Central  Google Scholar 

  30. Conway B, Miller RG, Costacou T et al (2009) Adiposity and mortality in T1D. Int J Obes [Lond] 33(7):796–805

    Article  CAS  Google Scholar 

  31. Urbina EM, Dabelea D, D’Agostino RB Jr et al (2013) Effect of T1D on carotid structure and function in adolescents and young adults: the SEARCH CVD study. Diabetes Care 36(9):2597–2599

    Article  PubMed  PubMed Central  Google Scholar 

  32. Smart CE, Annan F, Bruno LP et al (2014) Nutritional management in children and adolescents with diabetes. Pediatr Diabetes 15(Suppl 20):135–153

    Article  CAS  PubMed  Google Scholar 

  33. American Diabetes Association (2012) Standards of medical care in diabetes—2012. Diabetes Care 35(Suppl. 1):S11–S63

    Google Scholar 

  34. Cacciari E, Milani S, Balsamo A et al (2006) Italian cross-sectional growth charts for height, weight and BMI [2 to 20 year]. J Endocrinol Invest 29:581–593

    Article  CAS  PubMed  Google Scholar 

  35. Maffeis C, Banzato C, Talamini G, Obesity Study Group of the Italian Society of Pediatric Endocrinology and Diabetology (2008) Waist-to-height ratio, a useful index to identify high metabolic risk in overweight children. J Pediatr 152(2):207–213

    Article  PubMed  Google Scholar 

  36. Burrows TL, Martin RJ, Collins CE (2010) A systematic review of the validity of dietary assessment methods in children when compared with the method of doubly labeled water. J Am Diet Assoc 110(10):1501–1510

    Article  PubMed  Google Scholar 

  37. Willett W (1998) 24-Hour dietary recall and food record methods. Nutr Epidemiol. doi:10.1093/acprof:oso/9780195122978.001.0001

    Article  Google Scholar 

  38. National Institute for the Research in Food and Nutrition. Food composition tables. Edra Publ., 2007

  39. Maffeis C, Schutz Y, Micciolo R, Zoccante L, Pinelli L (1993) Resting metabolic rate in six- to ten-year-old obese and nonobese children. J Pediatr 122(4):556–562

    Article  CAS  PubMed  Google Scholar 

  40. Molnár D, Jeges S, Erhardt E, Schutz Y (1995) Measured and predicted resting metabolic rate in obese and nonobese adolescents. J Pediatr 127(4):571–577

    Article  PubMed  Google Scholar 

  41. Ogden CL, Carroll MD, Lawman HG et al (2016) Trends in obesity prevalence among children and adolescents in the United States, 1988–1994 through 2013–2014. JAMA 315(21):2292–2299

    Article  CAS  PubMed  Google Scholar 

  42. Olds T, Maher C, Zumin S et al (2011) Evidence that the prevalence of childhood overweight is plateauing: data from nine countries. Int J Pediatr Obes 6(5-6):342–360

    Article  PubMed  Google Scholar 

  43. DuBose SN, Hermann JM, Tamborlane WV et al (2015) Obesity in youth with T1D in Germany, Austria, and the United States. J Pediatr 167(3):627–632

    Article  PubMed  Google Scholar 

  44. Ali O, Cerjak D, Kent JW Jr, James R, Blangero J, Zhang Y (2014) Obesity, central adiposity and cardiometabolic risk factors in children and adolescents: a family-based study. Pediatr Obes. 9(3):e58–e62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Koskinen J, Magnussen CG, Sabin MA et al (2014) Youth overweight and metabolic disturbances in predicting carotid intima-media thickness, type 2 diabetes, and metabolic syndrome in adulthood: the Cardiovascular Risk in Young Finns study. Diabetes Care 37(7):1870–1877

    Article  CAS  PubMed  Google Scholar 

  46. Burns SF, Lee SJ, Arslanian SA (2012) Surrogate lipid markers for small dense low-density lipoprotein particles in overweight youth. J Pediatr 161:991–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leroux C, Brazeau AS, Gingras V, Desjardins K, Strychar I, Rabasa-Lhoret R (2014) Lifestyle and cardiometabolic risk in adults with T1D: a review. Can J Diabetes 38(1):62–69

    Article  PubMed  Google Scholar 

  48. Liese AD, Crandell JL, Tooze JA et al (2015) Sugar-sweetened beverage intake and cardiovascular risk factor profile in youth with T1D: application of measurement error methodology in the SEARCH Nutrition Ancillary Study. Br J Nutr 114(3):430–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nansel TR, Lipsky LM, Liu A (2016) Greater diet quality is associated with more optimal glycemic control in a longitudinal study of youth with type 1diabetes. Am J Clin Nutr 104(1):81–87

    Article  CAS  PubMed  Google Scholar 

  50. Kyrgios I, Maggana I, Giza S et al (2014) Suboptimal glycaemic control enhances the risk of impaired prothrombotic state in youths with T1D mellitus. Diabetes Vasc Dis Res 11(3):208–216

    Article  Google Scholar 

  51. Black AE, Cole TJ (2000) Within- and between-subject variation in energy expenditure measured by the doubly-labeled water technique: implications for validating reported dietary energy intake. Eur J Clin Nutr 54(5):386–394

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was funded by the University of Verona, Department of Life and Reproduction Sciences (University Funds for Research FUR # 2013 MAFF). We kindly thank the patients and their families who participated in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Marigliano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent

Informed consent was obtained from all patients for being included in the study.

Additional information

Managed by Antonio Secchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maffeis, C., Fornari, E., Morandi, A. et al. Glucose-independent association of adiposity and diet composition with cardiovascular risk in children and adolescents with type 1 diabetes. Acta Diabetol 54, 599–605 (2017). https://doi.org/10.1007/s00592-017-0993-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-017-0993-y

Keywords

Navigation