Skip to main content

Advertisement

Log in

Proteomic analysis reveals downregulation of housekeeping proteins in the diabetic vascular proteome

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Type 2 diabetes (T2D) increases the risk of death associated with cardiovascular complications. However, a complete understanding of protein changes within the diabetic vasculature is still lacking.

Methods

Herein, we utilized mass spectrometry to perform vascular and urinary proteome analysis using a rat model of high-fat feeding and low-dose streptozotocin to simulate late-stage T2D. The purpose of this study was to identify aortic and urine proteins that are differentially expressed in normal and T2D rats.

Results

High-fat feeding and low-dose streptozotocin resulted in hyperglycemia, hypoinsulinemia and high levels of circulating free fatty acids. Using a shotgun proteomic approach, high-mobility-group protein B1 and spondin-1 were significantly increased in T2D aorta compared to control aorta, suggesting vascular inflammation and smooth muscle proliferation, respectively. However, the majority of differentially expressed aortic proteins were downregulated in T2D, including proteins associated with coagulation, cell differentiation and redox homeostasis. Strikingly, we report a significant downregulation of commonly used cytoskeletal housekeeping proteins in T2D aorta. Urine from T2D rats displayed increased expression of proteins involved in inflammation and oxidative stress and decreased expression of proteins associated with lipid metabolism and cell adhesion. A number of differentially expressed proteins in urine of T2D rats have previously been reported in human T2D, thereby supporting this animal model as a good representation of human T2D.

Conclusions

Our data offer new information regarding key pathways that could be therapeutically targeted to combat the cardiovascular complications of T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ApoE:

Apolipoprotein E

CRP:

C-reactive protein

ER:

Endoplasmic reticulum

FFA:

Free fatty acids

GPx3:

Glutathione peroxidase 3

HMGB1:

High-mobility-group protein B1

H2O2 :

Hydrogen peroxide

HMG-CoA synthase:

Hydroxymethylglutaryl-CoA synthase

NO:

Nitric oxide

SOD:

Superoxide dismutase

SBP1:

Selenium-binding protein 1

T2D:

Type 2 diabetes

References

  1. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  CAS  PubMed  Google Scholar 

  2. Lebovitz HE, Banerji MA (2004) Treatment of insulin resistance in diabetes mellitus. Eur J Pharmacol 490:135–146

    Article  CAS  PubMed  Google Scholar 

  3. Sheetz MJ, King GL (2002) Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA 288:2579–2588

    Article  CAS  PubMed  Google Scholar 

  4. Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H (2001) Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia 44(Suppl 2):S14–S21

    Article  PubMed  Google Scholar 

  5. Kraegen EW, Clark PW, Jenkins AB, Daley EA, Chisholm DJ, Storlien LH (1991) Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats. Diabetes 40:1397–1403

    Article  CAS  PubMed  Google Scholar 

  6. Storlien LH, James DE, Burleigh KM, Chisholm DJ, Kraegen EW (1986) Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. Am J Physiol 251:E576–E583

    CAS  PubMed  Google Scholar 

  7. Reed MJ, Meszaros K, Entes LJ et al (2000) A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 49:1390–1394

    Article  CAS  PubMed  Google Scholar 

  8. Davidson EP, Coppey LJ, Holmes A, Dake B, Yorek MA (2011) Effect of treatment of high fat fed/low dose streptozotocin-diabetic rats with Ilepatril on vascular and neural complications. Eur J Pharmacol 668:497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schlatzer DM, Dazard JE, Dharsee M et al (2009) Urinary protein profiles in a rat model for diabetic complications. Mol Cell Proteom MCP 8:2145–2158

    Article  CAS  Google Scholar 

  10. Fazan R Jr, da Silva VJD, Ballejo G, Salgado HC (1999) Power spectra of arterial pressure and heart rate in streptozotocin-induced diabetes in rats. J Hypertens 17:489–495

    Article  PubMed  Google Scholar 

  11. Dall’Ago P, Fernandes TG, Machado UF, Bello AA, Irigoyen MC (1997) Baroreflex and chemoreflex dysfunction in streptozotocin-diabetic rats. Braz J Med Biol Res 30:119–124

    PubMed  Google Scholar 

  12. Podlaha R, Falk A (1992) The prevalence of diabetes mellitus and other risk factors of atherosclerosis in bradycardia requiring pacemaker treatment. Horm Metab Res Suppl Ser 26:84–87

    CAS  Google Scholar 

  13. Savarese JJ, Berkowitz BA (1979) β-Adrenergic receptor decrease in diabetic rat hearts. Life Sci 25:2075–2078

    Article  CAS  PubMed  Google Scholar 

  14. Bonthu S, Heistad DD, Chappell DA, Lamping KG, Faraci FM (1997) Atherosclerosis, vascular remodeling, and impairment of endothelium-dependent relaxation in genetically altered hyperlipidemic mice. Arterioscler Thromb Vasc Biol 17:2333–2340

    Article  CAS  PubMed  Google Scholar 

  15. Oltman CL, Davidson EP, Coppey LJ, Kleinschmidt TL, Lund DD, Yorek MA (2008) Attenuation of vascular/neural dysfunction in Zucker rats treated with enalapril or rosuvastatin. Obesity 16:82–89

    Article  CAS  PubMed  Google Scholar 

  16. Ishida K, Matsumoto T, Taguchi K, Kamata K, Kobayashi T (2012) Pravastatin normalizes endothelium-derived contracting factor-mediated response via suppression of Rho-kinase signalling in mesenteric artery from aged type 2 diabetic rat. Acta Physiol 205:255–265

    Article  CAS  Google Scholar 

  17. Grosschedl R, Giese K, Pagel J (1994) HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet 10:94–100

    Article  CAS  PubMed  Google Scholar 

  18. Davalos AR, Kawahara M, Malhotra GK et al (2013) p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J Cell Biol 201:613–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Miyamoto K, Morishita Y, Yamazaki M et al (2001) Isolation and characterization of vascular smooth muscle cell growth promoting factor from bovine ovarian follicular fluid and its cDNA cloning from bovine and human ovary. Arch Biochem Biophys 390:93–100

    Article  CAS  PubMed  Google Scholar 

  20. Oikawa S, Hayasaka K, Hashizume E et al (1996) Human arterial smooth muscle cell proliferation in diabetes. Diabetes 45(Suppl 3):S114–S116

    Article  CAS  PubMed  Google Scholar 

  21. Murakoshi M, Gohda T, Tanimoto M, Funabiki K, Horikoshi S, Tomino Y (2011) Role of mindin in diabetic nephropathy. Exp Diabetes Res 2011:486305

    Article  PubMed  PubMed Central  Google Scholar 

  22. Massberg S, Enders G, Matos FC et al (1999) Fibrinogen deposition at the postischemic vessel wall promotes platelet adhesion during ischemia-reperfusion in vivo. Blood 94:3829–3838

    CAS  PubMed  Google Scholar 

  23. Bunce LA, Sporn LA, Francis CW (1992) Endothelial cell spreading on fibrin requires fibrinopeptide B cleavage and amino acid residues 15-42 of the beta chain. J Clin Invest 89:842–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sporn LA, Bunce LA, Francis CW (1995) Cell proliferation on fibrin: modulation by fibrinopeptide cleavage. Blood 86:1802–1810

    CAS  PubMed  Google Scholar 

  25. Chalupowicz DG, Chowdhury ZA, Bach TL, Barsigian C, Martinez J (1995) Fibrin II induces endothelial cell capillary tube formation. J Cell Biol 130:207–215

    Article  CAS  PubMed  Google Scholar 

  26. Konieczynska M, Fil K, Bazanek M, Undas A (2014) Prolonged duration of type 2 diabetes is associated with increased thrombin generation, prothrombotic fibrin clot phenotype and impaired fibrinolysis. Thromb Haemost 111:685–693

    Article  CAS  PubMed  Google Scholar 

  27. Auwerx J, Bouillon R, Collen D, Geboers J (1988) Tissue-type plasminogen activator antigen and plasminogen activator inhibitor in diabetes mellitus. Arteriosclerosis 8:68–72

    Article  CAS  PubMed  Google Scholar 

  28. Dai H, Yu Z, Fan X et al (2013) Dysfunction of annexin A2 contributes to hyperglycaemia-induced loss of human endothelial cell surface fibrinolytic activity. Thromb Haemost 109:1070–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Flood EC, Hajjar KA (2011) The annexin A2 system and vascular homeostasis. Vascul Pharmacol 54:59–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kinoshita M, Field CM, Coughlin ML, Straight AF, Mitchison TJ (2002) Self- and actin-templated assembly of Mammalian septins. Dev Cell 3:791–802

    Article  CAS  PubMed  Google Scholar 

  31. Colella AD, Chegenii N, Tea MN, Gibbins IL, Williams KA, Chataway TK (2012) Comparison of stain-free gels with traditional immunoblot loading control methodology. Anal Biochem 430:108–110

    Article  CAS  PubMed  Google Scholar 

  32. Didion SP, Ryan MJ, Didion LA, Fegan PE, Sigmund CD, Faraci FM (2002) Increased superoxide and vascular dysfunction in CuZnSOD-deficient mice. Circ Res 91:938–944

    Article  CAS  PubMed  Google Scholar 

  33. Ohashi M, Runge MS, Faraci FM, Heistad DD (2006) MnSOD deficiency increases endothelial dysfunction in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 26:2331–2336

    Article  CAS  PubMed  Google Scholar 

  34. Loscalzo J (2001) Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res 88:756–762

    Article  CAS  PubMed  Google Scholar 

  35. De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM (2000) Endothelial dysfunction in diabetes. Br J Pharmacol 130:963–974

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee YS, Kim AY, Choi JW et al (2008) Dysregulation of adipose glutathione peroxidase 3 in obesity contributes to local and systemic oxidative stress. Mol Endocrinol 22:2176–2189

    Article  CAS  PubMed  Google Scholar 

  37. Huang C, Ding G, Gu C et al (2012) Decreased selenium-binding protein 1 enhances glutathione peroxidase 1 activity and downregulates HIF-1alpha to promote hepatocellular carcinoma invasiveness. Clin Cancer Res 18:3042–3053

    Article  CAS  PubMed  Google Scholar 

  38. Lewis P, Stefanovic N, Pete J et al (2007) Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation 115:2178–2187

    Article  CAS  PubMed  Google Scholar 

  39. Rindler PM, Plafker SM, Szweda LI, Kinter M (2013) High dietary fat selectively increases catalase expression within cardiac mitochondria. J Biol Chem 288:1979–1990

    Article  CAS  PubMed  Google Scholar 

  40. Reddy JK, Hashimoto T (2001) Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu Rev Nutr 21:193–230

    Article  CAS  PubMed  Google Scholar 

  41. Miyata M, Smith JD (1996) Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat Genet 14:55–61

    Article  CAS  PubMed  Google Scholar 

  42. Ishigami M, Swertfeger DK, Granholm NA, Hui DY (1998) Apolipoprotein E inhibits platelet-derived growth factor-induced vascular smooth muscle cell migration and proliferation by suppressing signal transduction and preventing cell entry to G1 phase. J Biol Chem 273:20156–20161

    Article  CAS  PubMed  Google Scholar 

  43. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353

    Article  CAS  PubMed  Google Scholar 

  44. Yoo BC, Kim SH, Cairns N, Fountoulakis M, Lubec G (2001) Deranged expression of molecular chaperones in brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun 280:249–258

    Article  CAS  PubMed  Google Scholar 

  45. Koch G, Smith M, Macer D, Webster P, Mortara R (1986) Endoplasmic reticulum contains a common, abundant calcium-binding glycoprotein, endoplasmin. J Cell Sci 86:217–232

    CAS  PubMed  Google Scholar 

  46. Li XA, Lee AS (1991) Competitive inhibition of a set of endoplasmic reticulum protein genes (GRP78, GRP94, and ERp72) retards cell growth and lowers viability after ionophore treatment. Mol Cell Biol 11:3446–3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gomer CJ, Ferrario A, Rucker N, Wong S, Lee AS (1991) Glucose regulated protein induction and cellular resistance to oxidative stress mediated by porphyrin photosensitization. Cancer Res 51:6574–6579

    CAS  PubMed  Google Scholar 

  48. Koong AC, Chen EY, Lee AS, Brown JM, Giaccia AJ (1994) Increased cytotoxicity of chronic hypoxic cells by molecular inhibition of GRP78 induction. Int J Radiat Oncol Biol Phys 28:661–666

    Article  CAS  PubMed  Google Scholar 

  49. Lee AS (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26:504–510

    Article  CAS  PubMed  Google Scholar 

  50. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  PubMed  Google Scholar 

  51. Ozcan U, Cao Q, Yilmaz E et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461

    Article  PubMed  Google Scholar 

  52. Laybutt DR, Preston AM, Akerfeldt MC et al (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50:752–763

    Article  CAS  PubMed  Google Scholar 

  53. Jonas JC, Sharma A, Hasenkamp W et al (1999) Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes. J Biol Chem 274:14112–14121

    Article  CAS  PubMed  Google Scholar 

  54. Unno M, Itoh T, Watanabe T et al (1992) Islet beta-cell regeneration and reg genes. Adv Exp Med Biol 321:61–66

    Article  CAS  PubMed  Google Scholar 

  55. Qiu L, List EO, Kopchick JJ (2005) Differentially expressed proteins in the pancreas of diet-induced diabetic mice. Mol Cell Proteom MCP 4:1311–1318

    Article  CAS  Google Scholar 

  56. Jin J, Ku YH, Kim Y et al (2012) Differential proteome profiling using iTRAQ in microalbuminuric and normoalbuminuric type 2 diabetic patients. Exp Diabetes Res 2012:168602

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sharma K, Lee S, Han S et al (2005) Two-dimensional fluorescence difference gel electrophoresis analysis of the urine proteome in human diabetic nephropathy. Proteomics 5:2648–2655

    Article  CAS  PubMed  Google Scholar 

  58. Roy AK, Chatterjee B, Prasad MS, Unakar NJ (1980) Role of insulin in the regulation of the hepatic messenger RNA for alpha 2u-globulin in diabetic rats. J Biol Chem 255:11614–11618

    CAS  PubMed  Google Scholar 

  59. Zimmerhackl LB, Pfleiderer S, Kinne R, Manz F, Schuler G, Brandis M (1991) Tamm-Horsfall-Protein excretion as a marker of ascending limb transport indicates early renal tubular damage in diabetes mellitus type I. J Diabet Complicat 5:112–114

    Article  CAS  Google Scholar 

  60. Koorts AM, Levay PF, Becker PJ, Viljoen M (2011) Pro- and Anti-Inflammatory Cytokines during Immune Stimulation: modulation of Iron Status and Red Blood Cell Profile. Mediators Inflamm 2011:716301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tajbakhsh S, Aliakbari K, Hussey DJ, Lower KM, Donato AJ, Sokoya EM (2015) Differential Telomere Shortening in Blood versus Arteries in an Animal Model of Type 2 Diabetes. J Diabetes Res 2015:153829

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Diabetes Australia Research Trust (EMS).

Authors’ contribution

EMS and TC performed conception and design of research. EMS, JD, NC and AC performed experiments. EMS and TC analyzed data. EMS prepared figures. EMS and TC interpreted results of experiments. EMS drafted manuscript. EMS and TC edited and revised manuscript. EMS, JD, NC, AC and TC approved final version of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke M. Sokoya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This article does not contain studies with human participants. All animal procedures performed in this study were carried out in accordance with the Australian Code for the Responsible Conduct of Research and were approved by the Flinders University Animal Ethics Committee (836/12).

Human and animal rights disclosure

This article does not contain any studies with human subjects performed by any of the authors. The animal experimental procedures were carried out in accordance with the Australian Code for the Responsible Conduct of Research and were approved by the Flinders University Animal Ethics Committee (836/12).

Informed consent disclosure

Formal consent was not required for this study.

Additional information

Managed by Antonio Secchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwinovan, J., Colella, A.D., Chegeni, N. et al. Proteomic analysis reveals downregulation of housekeeping proteins in the diabetic vascular proteome. Acta Diabetol 54, 171–190 (2017). https://doi.org/10.1007/s00592-016-0929-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-016-0929-y

Keywords

Navigation