Skip to main content
Log in

Correlations between A1c, fasting glucose, 2h postload glucose, and β-cell function in the Chinese population

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

This study was aimed to assess the associations of hemoglobin A1c (HbA1c), fasting plasma glucose (FPG), and 2h postload plasma glucose (2hPG) with β-cell function in the Chinese population. A total of 913 subjects underwent 75-g oral glucose tolerance test (OGTT) and HbA1c testing. According to OGTT, isolated impaired fasting glucose (i-IFG) was defined as 5.6 mmol/l ≤ FPG < 7.0 mmol/l and 2hPG < 7.8 mmol/l; isolated impaired glucose tolerance (i-IGT) was defined as FPG < 5.6 mmol/l and 7.8 mmol/l ≤ 2hPG < 11.1 mmol/l. HbA1c 5.7–6.4 % was used to identify subjects with prediabetes. Insulin release was calculated by basal homeostasis model assessment of insulin secretion (HOMA-β), early-phase InsAUC30/GluAUC30, and total-phase InsAUC120/GluAUC120. β-cell function relative to insulin sensitivity was expressed as disposition index (DI). All indices of insulin sensitivity and β-cell function gradually decreased with increasing HbA1c, FPG, and 2hPG (all p < 0.01). β-cell function decreased precipitously when HbA1c exceeded 5.5 %. Compared with HbA1c, FPG showed stronger correlations with HOMA-β, InsAUC30/GluAUC30, InsAUC120/GluAUC120, DI30, and DI120 (all p < 0.05), and 2hPG was more closely related to DI30 and DI120 (all p < 0.01). Moreover, FPG was more strongly related to HOMA-β and InsAUC30/GluAUC30 than 2hPG (all p < 0.05). The combination of i-IFG and HbA1c 5.7–6.4 % showed the greatest reduction in DI30 and DI120 compared with HbA1c 5.7–6.4 % alone, i-IGT, or i-IFG (p < 0.05). In conclusion, HbA1c could be used as a marker to identify subjects with impaired β-cell function, but OGTT performs better than HbA1c. The combination of HbA1c and FPG is a simple and sensitive method to evaluate β-cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Festa A, D’Agostino R Jr, Hanley AJ, Karter AJ, Saad MF, Haffner SM (2004) Differences in insulin resistance in nondiabetic subjects with isolated impaired glucose tolerance or isolated impaired fasting glucose. Diabetes 53:1549–1555

    Article  CAS  PubMed  Google Scholar 

  3. Stancakova A, Javorsky M, Kuulasmaa T, Haffner SM, Kuusisto J, Laakso M (2009) Changes in insulin sensitivity and insulin release in relation to glycemia and glucose tolerance in 6, 414 Finnish men. Diabetes 58:1212–1221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bi Y, Zeng L, Zhu D, Yan J, Zhang Y, Tong G, Mu P, Shen S, Hu Y, Yu Q (2012) Association of beta-cell function and insulin sensitivity with fasting and 2-h plasma glucose in a large Chinese population. Diabetes Obes Metab 14:174–180

    Article  CAS  PubMed  Google Scholar 

  5. Bi Y, Zhu D, Jing Y, Hu Y, Feng W, Shen S, Tong G, Shen X, Yu T, Song D (2010) Decreased beta cell function and insulin sensitivity contributed to increasing fasting glucose in Chinese. Acta Diabetol 49(Suppl 1):S51–S58

    PubMed  Google Scholar 

  6. American Diabetes Association (1989) Standards of medical care for patients with diabetes mellitus. Diabetes Care 12:365–368

    Google Scholar 

  7. American Diabetes Association (2010) Standards of medical care in diabetes—2010. Diabetes Care 33(Suppl 1):S11–S61

    Article  PubMed Central  Google Scholar 

  8. Lorenzo C, Wagenknecht LE, Hanley AJ, Rewers MJ, Karter AJ, Haffner SM (2010) A1C between 5.7 and 6.4% as a marker for identifying pre-diabetes, insulin sensitivity and secretion, and cardiovascular risk factors: the Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care 33:2104–2109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Sjaarda LA, Michaliszyn SF, Lee S, Tfayli H, Bacha F, Farchoukh L, Arslanian SA (2012) HbA1c diagnostic categories and beta-cell function relative to insulin sensitivity in overweight/obese adolescents. Diabetes Care 35:2559–2563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Heianza Y, Arase Y, Fujihara K, Tsuji H, Saito K, Hsieh SD, Kodama S, Shimano H, Yamada N, Hara S, Sone H (2012) High normal HbA(1c) levels were associated with impaired insulin secretion without escalating insulin resistance in Japanese individuals: the Toranomon Hospital Health Management Center Study 8 (TOPICS 8). Diabet Med 29:1285–1290

    Article  CAS  PubMed  Google Scholar 

  11. Kanat M, Winnier D, Norton L, Arar N, Jenkinson C, DeFronzo RA, Abdul-Ghani MA (2011) The relationship between β-cell function and glycated hemoglobin results from the Veterans Administration Genetic Epidemiology Study. Diabetes Care 34:1006–1010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wang JS, Lee IT, Lee WJ, Lin SY, Fu CP, Ting CT, Lee WL, Liang KW, Sheu WH (2013) Performance of HbA1c and fasting plasma glucose in screening for diabetes in patients undergoing coronary angiography. Diabetes Care 36:1138–1140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Bianchi C, Miccoli R, Bonadonna RC, Giorgino F, Frontoni S, Faloia E, Marchesini G, Dolci MA, Cavalot F, Cavallo GM, Leonetti F, Del Prato S (2012) Pathogenetic mechanisms and cardiovascular risk: differences between HbA1c and oral glucose tolerance test for the diagnosis of glucose tolerance. Diabetes Care 35:2607–2612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Herman WH (2009) Do race and ethnicity impact hemoglobin A1c independent of glycemia? J Diabetes Sci Technol 3:656–660

    Article  PubMed Central  PubMed  Google Scholar 

  15. Bei‐Fan Z (2002) Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults: study on optimal cut‐off points of body mass index and waist circumference in Chinese adults. Asia Pac J Clin Nutr 11:S685–S693

    Article  PubMed  Google Scholar 

  16. IDF Clinical Guidelines Task Force (2012) International diabetes federation global guideline for type 2 diabetes. http://www.idf.org/global-guideline-type-2-diabetes-2012. Accessed 27 March 2013

  17. Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22:1462–1470

    Article  CAS  PubMed  Google Scholar 

  18. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  19. Abdul-Ghani MA, Matsuda M, Balas B, DeFronzo RA (2007) Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care 30:89–94

    Article  CAS  PubMed  Google Scholar 

  20. Utzschneider KM, Prigeon RL, Faulenbach MV, Tong J, Carr DB, Boyko EJ, Leonetti DL, McNeely MJ, Fujimoto WY, Kahn SE (2009) Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care 32:335–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ko GT, Chan JC, Tsang LW, Cockram CS (2000) Combined use of fasting plasma glucose and HbA1c predicts the progression to diabetes in Chinese subjects. Diabetes Care 23:1770–1773

    Article  CAS  PubMed  Google Scholar 

  22. Nomura K, Inoue K, Akimoto K (2012) A two-step screening, measurement of HbA1c in association with FPG, may be useful in predicting diabetes. PLoS ONE 7:e36309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Heianza Y, Hara S, Arase Y, Saito K, Fujiwara K, Tsuji H, Kodama S, Hsieh SD, Mori Y, Shimano H, Yamada N, Kosaka K, Sone H (2011) HbA1c 5.7–6.4% and impaired fasting plasma glucose for diagnosis of prediabetes and risk of progression to diabetes in Japan (TOPICS 3): a longitudinal cohort study. Lancet 378:147–155

    Article  CAS  PubMed  Google Scholar 

  24. Elbein SC, Wegner K, Kahn SE (2000) Reduced beta-cell compensation to the insulin resistance associated with obesity in members of caucasian familial type 2 diabetic kindreds. Diabetes Care 23:221–227

    Article  CAS  PubMed  Google Scholar 

  25. Jie H, Weiqiong G, Yifei Z, Yuhong C, Shouyue S, Yongjie Z, Guang N (2003) Study on insulin sensitivity and islet β cell’s function in obesity and non-obesity type 2 diabetes. Chin J Diabetes 11:96–99

    Google Scholar 

  26. Retnakaran R, Shen S, Hanley AJ, Vuksan V, Hamilton JK, Zinman B (2008) Hyperbolic relationship between insulin secretion and sensitivity on oral glucose tolerance test. Obesity (Silver Spring) 16:1901–1907

    Article  CAS  Google Scholar 

  27. Retnakaran R, Qi Y, Goran MI, Hamilton JK (2009) Evaluation of proposed oral disposition index measures in relation to the actual disposition index. Diabet Med 26:1198–1203

    Article  CAS  PubMed  Google Scholar 

  28. Stumvoll M, Mitrakou A, Pimenta W, Jenssen T, Yki-Järvinen H, Van Haeften T, Renn W, Gerich J (2000) Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care 23:295–301

    Article  CAS  PubMed  Google Scholar 

  29. Hanefeld M, Koehler C, Fuecker K, Henkel E, Schaper F, Temelkova-Kurktschiev T (2003) Insulin secretion and insulin sensitivity pattern is different in isolated impaired glucose tolerance and impaired fasting glucose: the risk factor in impaired glucose tolerance for Atherosclerosis and Diabetes Study. Diabetes Care 26:868–874

    Article  CAS  PubMed  Google Scholar 

  30. Tripathy D, Carlsson M, Almgren P, Isomaa B, Taskinen MR, Tuomi T, Groop LC (2000) Insulin secretion and insulin sensitivity in relation to glucose tolerance: lessons from the Botnia Study. Diabetes 49:975–980

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was sponsored by grants from the National Natural Science Foundation of China Grant Award (81270906, 30800539, 81070636), the Project of National Key Clinical Division, the China postdoctoral Science Foundation (2012M521050), Jiangsu postdoctoral Science Foundation, Jiangsu Province’s Key Provincial Talents Program (RC2011011), Jiangsu Province’s Key Discipline of Medicine (XK201105), and the Key Project of Nanjing Medical Science and Technology Development Foundation (ZKX11017).

Conflict of interest

The authors declare that there is no duality of interest associated with this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Bi or Dalong Zhu.

Additional information

Communicated by Massimo Porta.

Cuiliu Li and Huijie Yang have contributed equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Yang, H., Tong, G. et al. Correlations between A1c, fasting glucose, 2h postload glucose, and β-cell function in the Chinese population. Acta Diabetol 51, 601–608 (2014). https://doi.org/10.1007/s00592-014-0563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-014-0563-5

Keywords

Navigation