Skip to main content
Log in

Ceramide content is higher in type I compared to type II fibers in obesity and type 2 diabetes mellitus

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

This study investigated fiber-type-specific muscle ceramide content in obese subjects and type 2 diabetes patients. Two substudies, one which compared type 2 diabetes patients to both lean- and obese BMI-matched subjects and the other study which compared lean body–matched post-obese, obese, and control subjects, were performed. A fasting blood sample was obtained and plasma insulin and glucose determined. A muscle biopsy was obtained from deltoideus and vastus lateralis, and fiber-type ceramide content was determined by fluorescence immunohistochemistry. Insulin sensitivity estimated by Quicki index was higher in lean compared to type 2 diabetes patients and obese controls. Also in control and post-obese subjects, a higher insulin sensitivity was observed compared to obese subjects. Ceramide content was consistently higher in type I than in type II muscle fibers and higher in deltoideus than vastus lateralis across all groups. No significant differences between groups were observed in ceramide content in either of the two substudies. In human skeletal muscle, ceramide content was higher in type I than in type II fibers in patients with type 2 diabetes and in obese subjects, but overall ceramide muscle fiber content was not different compared to controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kraegen EW, Cooney GJ, Turner N (2008) Muscle insulin resistance: a case of fat overconsumption, not mitochondrial dysfunction. Proc Natl Acad Sci USA 105:7627–7628

    Article  PubMed  CAS  Google Scholar 

  2. Corpeleijn E, Hessvik NP, Bakke SS, Levin K, Blaak EE, Thoresen GH, Gaster M, Rustan AC (2010) Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids. Am J Physiol Endocrinol Metab 299:E14–E22

    Article  PubMed  CAS  Google Scholar 

  3. Summers SA (2006) Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res 45:42–72

    Article  PubMed  CAS  Google Scholar 

  4. Adams JM, Pratipanawatr T, Berria R, Wang E, DeFronzo RA, Sullards MC, Mandarino LJ (2004) Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 53:25–31

    Article  PubMed  CAS  Google Scholar 

  5. Straczkowski M, Kowalska I, Baranowski M, Nikolajuk A, Otziomek E, Zabielski P, Adamska A, Blachnio A, Gorski J, Gorska M (2007) Increased skeletal muscle ceramide level in men at risk of developing type 2 diabetes. Diabetologia 50:2366–2373

    Article  PubMed  CAS  Google Scholar 

  6. Coen PM, Dube JJ, Amati F, Stefanovic-Racic M, Ferrell RE, Toledo FG, Goodpaster BH (2010) Insulin resistance is associated with higher intramyocellular triglycerides in type I but not type II myocytes concomitant with higher ceramide content. Diabetes 59:80–88

    Article  PubMed  CAS  Google Scholar 

  7. Bruce CR, Thrush AB, Mertz VA, Bezaire V, Chabowski A, Heigenhauser GJ, Dyck DJ (2006) Endurance training in obese humans improves glucose tolerance, mitochondrial fatty acid oxidation and alters muscle lipid content. Am J Physiol Endocrinol Metab 291:E99–E107

    Article  PubMed  CAS  Google Scholar 

  8. Dube JJ, Amati F, Toledo FG, Stefanovic-Racic M, Rossi A, Coen P, Goodpaster BH (2011) Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia 54:1147–1156

    Article  PubMed  CAS  Google Scholar 

  9. Skovbro M, Baranowski M, Skov-Jensen C, Flint A, Dela F, Gorski J, Helge JW (2008) Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity. Diabetologia 51:1253–1261

    Article  PubMed  CAS  Google Scholar 

  10. Helge JW, Dobrzyn A, Saltin B, Gorski J (2004) Exercise and training effects on ceramide metabolism in human skeletal muscle. Exp Physiol 89:119–127

    Article  PubMed  CAS  Google Scholar 

  11. Serlie MJ, Meijer AJ, Groener JE, Duran M, Endert E, Fliers E, Aerts JM, Sauerwein HP (2007) Short-term manipulation of plasma free fatty acids does not change skeletal muscle concentrations of ceramide and glucosylceramide in lean and overweight subjects. J Clin Endocrinol Metab 92:1524–1529

    Article  PubMed  CAS  Google Scholar 

  12. Helge JW, Stallknecht B, Drachmann T, Hellgren LI, Jimenez–Jimenez R, Andersen JL, Richelsen B, Bruun JM (2011) Improved glucose tolerance after intensive life style intervention occurs without changes in muscle ceramide or triacylglycerol in morbidly obese subjects. Acta Physiol (Oxf) 201:357–364

    Article  CAS  Google Scholar 

  13. Nordby P, Prats C, Kristensen D, Ekroos K, Forsberg G, Andersen JL, Ploug T, Dela F, Storlien L, Helge JW (2010) Muscle ceramide content in man is higher in type I than type II fibers and not influenced by glycogen content. Eur J Appl Physiol 109:935–943

    Article  PubMed  CAS  Google Scholar 

  14. Larsen S, Ara I, Rabol R, Andersen JL, Boushel R, Dela F, Helge JW (2009) Are substrate use during exercise and mitochondrial respiratory capacity decreased in arm and leg muscle in type 2 diabetes? Diabetologia 52:1400–1408

    Article  PubMed  CAS  Google Scholar 

  15. Ara I, Larsen S, Stallknecht B, Guerra B, Morales-Alamo D, Andersen JL, Ponce-Gonzalez JG, Guadalupe-Grau A, Galbo H, Calbet JA, Helge JW (2011) Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans. Int J Obes (Lond) 35:99–108

    Article  CAS  Google Scholar 

  16. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, Quon MJ (2000) Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 85:2402–2410

    Article  PubMed  CAS  Google Scholar 

  17. Stefanini M, De MC, Zamboni L (1967) Fixation of ejaculated spermatozoa for electron microscopy. Nature 216:173–174

    Article  PubMed  CAS  Google Scholar 

  18. Dobrzyn A, Gorski J (2002) Effect of acute exercise on the content of free sphinganine and sphingosine in different skeletal muscle types of the rat. Horm Metab Res 34:523–529

    Article  PubMed  CAS  Google Scholar 

  19. Dobrzyn A, Zendzian-Piotrowska M, Gorski J (2004) Effect of endurance training on the sphingomyelin-signalling pathway activity in the skeletal muscles of the rat. J Physiol Pharmacol 55:305–313

    PubMed  CAS  Google Scholar 

  20. Malenfant P, Tremblay A, Doucet E, Imbeault P, Simoneau JA, Joanisse DR (2001) Elevated intramyocellular lipid concentration in obese subjects is not reduced after diet and exercise training. Am J Physiol Endocrinol 280:E632–E639

    CAS  Google Scholar 

  21. He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes 50:817–823

    Article  PubMed  CAS  Google Scholar 

  22. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–3025

    Article  PubMed  CAS  Google Scholar 

  23. Cuschieri J, Bulger E, Billgrin J, Garcia I, Maier RV (2007) Acid sphingomyelinase is required for lipid Raft TLR4 complex formation. Surg Infect (Larchmt) 8:91–106

    Article  Google Scholar 

  24. Holland WL, Bikman BT, Wang LP, Yuguang G, Sargent KM, Bulchand S, Knotts TA, Shui G, Clegg DJ, Wenk MR, Pagliassotti MJ, Scherer PE, Summers SA (2011) Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest 121:1858–1870

    Article  PubMed  CAS  Google Scholar 

  25. Kim TH, Choi SE, Ha ES, Jung JG, Han SJ, Kim HJ, Kim DJ, Kang Y, Lee KW (2011) IL-6 induction of TLR-4 gene expression via STAT3 has an effect on insulin resistance in human skeletal muscle. Acta Diabetol [Epub ahead of print]

  26. Kern M, Wells JA, Stephens JM, Elton CW, Friedman JE, Tapscott EB, Pekala PH, Dohm GL (1990) Insulin responsiveness in skeletal muscle is determined by glucose transporter (Glut4) protein level. Biochem J 270:397–400

    PubMed  CAS  Google Scholar 

  27. James D, Jenkins A, Kraegen E (1985) Heterogeneity of insulin action in individual muscles in vivo: euglycemic clamp studies in rats. Am J Physiol 248:E567–E574

    PubMed  CAS  Google Scholar 

  28. Kelley DE, Simoneau J-A (1994) Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus. J Clin Invest 94:2349–2356

    Article  PubMed  CAS  Google Scholar 

  29. Hickey MS, Carey JO, Azevedo JL, Houmard JA, Pories WJ, Israel RG, Dohm GL (1995) Skeletal muscle fiber composition is related to adiposity and in vitro glucose transport rate in humans. Am J Physiol 268:E453–E457

    PubMed  CAS  Google Scholar 

  30. Helge JW, Kriketos AD, Storlien LH (1998) Insulin sensitivity, muscle fibre types and membrane lipids. In: Richter EA (ed) Skeletal muscle metabolism in exercise and diabetes, 441st edn. Plenum Press, New York, pp 129–138

  31. Straczkowski M, Kowalska I, Nikolajuk A, Dzienis-Straczkowska S, Kinalska I, Baranowski M, Zendzian-Piotrowska M, Brzezinska Z, Gorski J (2004) Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle. Diabetes 53:1215–1221

    Article  PubMed  CAS  Google Scholar 

  32. Itani SI, Ruderman NB, Schmieder F, Boden G (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51:2005–2011

    Article  PubMed  CAS  Google Scholar 

  33. Vistisen B, Hellgren L, Vadset T, Scheede-Bergdahl C, Helge JW, Dela F, Stallknecht B (2008) Effect of gender on lipid-induced insulin resistance in obese subjects. Eur J Endocrinol 158:61–68

    Article  PubMed  CAS  Google Scholar 

  34. Helge JW, Tobin L, Drachmann T, Hellgren LI, Dela F, Galbo H (2012) Muscle ceramide content is similar after 3 weeks’ consumption of fat or carbohydrate diet in a crossover design in patients with type 2 diabetes. Eur J Appl Physiol 112:911–918

    Google Scholar 

  35. Lipina C, Hundal HS (2011) Sphingolipids: agents provocateurs in the pathogenesis of insulin resistance. Diabetologia 54:1596–1607

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was received from the Velux Foundation, the Lundbeck Foundation, the Novo Nordisk Foundation, The Foundation of 1870, Direktør Jacob and Olga Madsens Foundation, Aase and Ejnar Danielsens foundation, and Astra Zeneca. Furthermore, we thank Jesper Isager Sally, Thomas Beck, Jeppe Bach, and Regitze Kraunsøe (all Dept. Biomedical Sciences, University of Copenhagen) for providing excellent technical assistance. In addition, we thank Assoc. Prof. Bente Stallknecht (Dept. Biomedical Sciences, University of Copenhagen) for performing the biopsies in the Post-obese study.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jørn W. Helge.

Additional information

Communicated by Massimo Federici.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristensen, D., Prats, C., Larsen, S. et al. Ceramide content is higher in type I compared to type II fibers in obesity and type 2 diabetes mellitus. Acta Diabetol 50, 705–712 (2013). https://doi.org/10.1007/s00592-012-0379-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-012-0379-0

Keywords

Navigation