Skip to main content

Advertisement

Log in

Distraction osteogenesis reconstruction of large segmental bone defects after primary tumor resection: pitfalls and benefits

  • Expert's Opinion • PAEDIATRIC - TUMORS
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Successful cure is achieved in almost 70% of patients with primary bone sarcomas with currently available therapies. Some soft tissue sarcomas require wide bone resection in order to achieve appropriate margins for cure of disease, and patients undergoing these procedures need durable reconstruction. Biological reconstruction has been shown to provide patients with superior long-term results over other alternatives. Distraction osteogenesis is well studied in the correction of deformities as well as in addressing some congenital musculoskeletal pathologies. The use of this technique in tumor settings has been avoided by many surgeons for a multitude of concerns, including infection risk, potential tumor activation, and uncertainty regarding the effect of systemic therapy on the callus regenerate. We review the use of this reconstruction technique using cases from our institutional experience to illustrate its incorporation into the successful management of orthopedic oncology patients. Distraction osteogenesis is an effective method for reconstructing even large bony defects and is safe in the setting of systemic therapy. This technique has the potential to address some of the common problems associated with orthopedic oncology resection, such as infection and leg length discrepancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eyre R, Feltbower RG, James PW, Blakey K, Mubwandarikwa E, Forman D, McKinney PA, Pearce MS, McNally RJ (2010) The epidemiology of bone cancer in 0–39 year olds in northern England, 1981–2002. BMC Cancer 10:357. doi:10.1186/1471-2407-10-357

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rougraff BT, Simon MA, Kneisl JS, Greenberg DB, Mankin HJ (1994) Limb salvage compared with amputation for osteosarcoma of the distal end of the femur: a long-term oncological, functional, and quality-of-life study. J Bone Joint Surg Am 76(5):649–656

    Article  CAS  PubMed  Google Scholar 

  3. Hejna MJ, Gitelis S (1997) Allograft prosthetic composite replacement for bone tumors. Semin Surg Oncol 13(1):18–24

    Article  CAS  PubMed  Google Scholar 

  4. Gitelis S, Piasecki P (1991) Allograft prosthetic composite arthroplasty for osteosarcoma and other aggressive bone tumors. Clin Orthop Relat Res 270:197–201

    Google Scholar 

  5. Biau DJ, Dumaine V, Babinet A, Tomeno B, Anract P (2007) Allograft-prosthesis composites after bone tumor resection at the proximal tibia. Clin Orthop Relat Res 456:211–217. doi:10.1097/BLO.0b013e31802ba478

    Article  PubMed  Google Scholar 

  6. Abdeen A, Hoang BH, Athanasian EA, Morris CD, Boland PJ, Healey JH (2009) Allograft-prosthesis composite reconstruction of the proximal part of the humerus: functional outcome and survivorship. J Bone Joint Surg Am 91(10):2406–2415. doi:10.2106/JBJS.H.00815

    Article  PubMed  Google Scholar 

  7. Ortiz-Cruz E, Gebhardt MC, Jennings LC, Springfield DS, Mankin HJ (1997) The results of transplantation of intercalary allografts after resection of tumors: a long-term follow-up study. J Bone Joint Surg Am 79(1):97–106

    Article  CAS  PubMed  Google Scholar 

  8. Donati D, Capanna R, Campanacci D, Del Ben M, Ercolani C, Masetti C, Taminiau A, Exner GU, Dubousset JF, Paitout D et al (1993) The use of massive bone allografts for intercalary reconstruction and arthrodeses after tumor resection: a multicentric European study. Chir Organi Mov 78(2):81–94

    CAS  PubMed  Google Scholar 

  9. Matejovsky Z Jr, Matejovsky Z, Kofranek I (2006) Massive allografts in tumour surgery. Int Orthop 30(6):478–483. doi:10.1007/s00264-006-0223-7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mankin HJ, Springfield DS, Gebhardt MC, Tomford WW (1992) Current status of allografting for bone tumors. Orthopedics 15(10):1147–1154

    CAS  PubMed  Google Scholar 

  11. Thompson RC Jr, Pickvance EA, Garry D (1993) Fractures in large-segment allografts. J Bone Joint Surg Am 75(11):1663–1673

    Article  PubMed  Google Scholar 

  12. Hornicek FJ, Gebhardt MC, Tomford WW, Sorger JI, Zavatta M, Menzner JP, Mankin HJ (2001) Factors affecting nonunion of the allograft-host junction. Clin Orthop Relat Res 382:87–98

    Article  Google Scholar 

  13. Donati D, Di Liddo M, Zavatta M, Manfrini M, Bacci G, Picci P, Capanna R, Mercuri M (2000) Massive bone allograft reconstruction in high-grade osteosarcoma. Clin Orthop Relat Res 377:186–194

    Article  Google Scholar 

  14. Mroz TE, Joyce MJ, Steinmetz MP, Lieberman IH, Wang JC (2008) Musculoskeletal allograft risks and recalls in the United States. J Am Acad Orthop Surg 16(10):559–565

    Article  PubMed  Google Scholar 

  15. Shehadeh A, Noveau J, Malawer M, Henshaw R (2010) Late complications and survival of endoprosthetic reconstruction after resection of bone tumors. Clin Orthop Relat Res 468(11):2885–2895. doi:10.1007/s11999-010-1454-x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Grimer RJ, Aydin BK, Wafa H, Carter SR, Jeys L, Abudu A, Parry M (2016) Very long-term outcomes after endoprosthetic replacement for malignant tumours of bone. Bone Joint J 98-B(6):857–864. doi:10.1302/0301-620X.98B6.37417

    Article  CAS  PubMed  Google Scholar 

  17. Ruggieri P, Mavrogenis AF, Pala E, Romantini M, Manfrini M, Mercuri M (2013) Outcome of expandable prostheses in children. J Pediatr Orthop 33(3):244–253. doi:10.1097/BPO.0b013e318286c178

    Article  PubMed  Google Scholar 

  18. Antia NH, Buch VI (1971) Transfer of an abdominal dermo-fat graft by direct anastomosis of blood vessels. Br J Plast Surg 24(1):15–19

    Article  CAS  PubMed  Google Scholar 

  19. Taylor GI, Miller GD, Ham FJ (1975) The free vascularized bone graft: a clinical extension of microvascular techniques. Plast Reconstr Surg 55(5):533–544

    Article  CAS  PubMed  Google Scholar 

  20. Weiland AJ (1984) Vascularized bone transfers. Instr Course Lect 33:446–460

    CAS  PubMed  Google Scholar 

  21. Wood MB (1990) Femoral reconstruction by vascularized bone transfer. Microsurgery 11(1):74–79

    Article  CAS  PubMed  Google Scholar 

  22. Muramatsu K, Ihara K, Doi K, Shigetomi M, Hashimoto T, Taguchi T (2006) Reconstruction of massive femur defect with free vascularized fibula graft following tumor resection. Anticancer Res 26(5):3679–3683

    PubMed  Google Scholar 

  23. Capanna R, Campanacci DA, Belot N, Beltrami G, Manfrini M, Innocenti M, Ceruso M (2007) A new reconstructive technique for intercalary defects of long bones: the association of massive allograft with vascularized fibular autograft: long-term results and comparison with alternative techniques. Orthop Clin North Am 38(1):51–60. doi:10.1016/j.ocl.2006.10.008

    Article  PubMed  Google Scholar 

  24. Ceruso M, Taddei F, Bigazzi P, Manfrini M (2008) Vascularised fibula graft inlaid in a massive bone allograft: considerations on the bio-mechanical behaviour of the combined graft in segmental bone reconstructions after sarcoma resection. Injury 39(Suppl 3):S68–S74. doi:10.1016/j.injury.2008.05.014

    Article  PubMed  Google Scholar 

  25. Pho RW, Levack B, Satku K, Patradul A (1985) Free vascularised fibular graft in the treatment of congenital pseudarthrosis of the tibia. J Bone Joint Surg Br 67(1):64–70

    Article  CAS  PubMed  Google Scholar 

  26. Hsu LC, Yau AC, O’Brien JP, Hodgson AR (1972) Valgus deformity of the ankle resulting from fibular resection for a graft in subtalar fusion in children. J Bone Joint Surg Am 54(3):585–594

    Article  CAS  PubMed  Google Scholar 

  27. Nathan SS, Hung-Yi L, Disa JJ, Athanasian E, Boland P, Cordeiro PG, Healey JH (2005) Ankle instability after vascularized fibular harvest for tumor reconstruction. Ann Surg Oncol 12(1):57–64. doi:10.1007/s10434-004-1162-4

    Article  PubMed  Google Scholar 

  28. Li P, Fang Q, Qi J, Luo R, Sun C (2015) Risk factors for early and late donor-site morbidity after free fibula flap harvest. J Oral Maxillofac Surg 73(8):1637–1640. doi:10.1016/j.joms.2015.01.036

    Article  PubMed  Google Scholar 

  29. Tsuchiya H, Shirai T, Morsy AF, Sakayama K, Wada T, Kusuzaki K, Sugita T, Tomita K (2008) Safety of external fixation during postoperative chemotherapy. J Bone Joint Surg Br 90(7):924–928. doi:10.1302/0301-620X.90B7.20674

    Article  CAS  PubMed  Google Scholar 

  30. Parameswaran AD, Roberts CS, Seligson D, Voor M (2003) Pin tract infection with contemporary external fixation: how much of a problem? J Orthop Trauma 17(7):503–507

    Article  PubMed  Google Scholar 

  31. Patterson MM (2005) Multicenter pin care study. Orthop Nurs 24(5):349–360

    Article  PubMed  Google Scholar 

  32. Cavusoglu AT, Er MS, Inal S, Ozsoy MH, Dincel VE, Sakaogullari A (2009) Pin site care during circular external fixation using two different protocols. J Orthop Trauma 23(10):724–730. doi:10.1097/BOT.0b013e3181abbc31

    Article  PubMed  Google Scholar 

  33. Ferreira N, Marais LC (2012) Prevention and management of external fixator pin track sepsis. Strateg Trauma Limb Reconstr 7(2):67–72. doi:10.1007/s11751-012-0139-2

    Article  Google Scholar 

  34. Harris NL, Eilert RE, Davino N, Ruyle S, Edwardson M, Wilson V (1994) Osteogenic sarcoma arising from bony regenerate following Ilizarov femoral lengthening through fibrous dysplasia. J Pediatr Orthop 14(1):123–129

    Article  CAS  PubMed  Google Scholar 

  35. Qu N, Yao W, Cui X, Zhang H (2015) Malignant transformation in monostotic fibrous dysplasia: clinical features, imaging features, outcomes in 10 patients, and review. Medicine (Baltimore) 94(3):e369. doi:10.1097/MD.0000000000000369

    Article  Google Scholar 

  36. Ruggieri P, Sim FH, Bond JR, Unni KK (1994) Malignancies in fibrous dysplasia. Cancer 73(5):1411–1424

    Article  CAS  PubMed  Google Scholar 

  37. Sadeghi SM, Hosseini SN (2011) Spontaneous conversion of fibrous dysplasia into osteosarcoma. J Craniofac Surg 22(3):959–961. doi:10.1097/SCS.0b013e31820fe2bd

    Article  PubMed  Google Scholar 

  38. Doganavsargil B, Argin M, Kececi B, Sezak M, Sanli UA, Oztop F (2009) Secondary osteosarcoma arising in fibrous dysplasia, case report. Arch Orthop Trauma Surg 129(4):439–444. doi:10.1007/s00402-008-0669-8

    Article  PubMed  Google Scholar 

  39. Domson GF, Shahlaee A, Reith JD, Bush CH, Gibbs CP (2009) Infarct-associated bone sarcomas. Clin Orthop Relat Res 467(7):1820–1825. doi:10.1007/s11999-009-0744-7

    Article  PubMed  PubMed Central  Google Scholar 

  40. Banfi A, Podesta M, Fazzuoli L, Sertoli MR, Venturini M, Santini G, Cancedda R, Quarto R (2001) High-dose chemotherapy shows a dose-dependent toxicity to bone marrow osteoprogenitors: a mechanism for post-bone marrow transplantation osteopenia. Cancer 92(9):2419–2428

    Article  CAS  PubMed  Google Scholar 

  41. Fan C, Cool JC, Scherer MA, Foster BK, Shandala T, Tapp H, Xian CJ (2009) Damaging effects of chronic low-dose methotrexate usage on primary bone formation in young rats and potential protective effects of folinic acid supplementary treatment. Bone 44(1):61–70. doi:10.1016/j.bone.2008.09.014

    Article  CAS  PubMed  Google Scholar 

  42. Kemp K, Morse R, Wexler S, Cox C, Mallam E, Hows J, Donaldson C (2010) Chemotherapy-induced mesenchymal stem cell damage in patients with hematological malignancy. Ann Hematol 89(7):701–713. doi:10.1007/s00277-009-0896-2

    Article  CAS  PubMed  Google Scholar 

  43. Cao J, Tan MH, Yang P, Li WL, Xia J, Du H, Tang WB, Wang H, Chen XW, Xiao HQ (2008) Effects of adjuvant chemotherapy on bone marrow mesenchymal stem cells of colorectal cancer patients. Cancer Lett 263(2):197–203. doi:10.1016/j.canlet.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  44. Watanabe K, Tsuchiya H, Sakurakichi K, Yamashiro T, Matsubara H, Tomita K (2007) Treatment of lower limb deformities and limb-length discrepancies with the external fixator in Ollier’s disease. J Orthop Sci 12(5):471–475. doi:10.1007/s00776-007-1163-9

    Article  PubMed  Google Scholar 

  45. Kapukaya A, Subasi M, Arslan H, Tuzuner T, Selek S (2006) Technique and complications of callus distraction in the treatment of bone tumors. Arch Orthop Trauma Surg 126(3):157–163. doi:10.1007/s00402-006-0123-8

    Article  PubMed  Google Scholar 

  46. Rohde RS, Puhaindran ME, Morris CD, Alektiar KM, Schupak KD, Healey JH, Athanasian EA (2010) Complications of radiation therapy to the hand after soft tissue sarcoma surgery. J Hand Surg Am 35(11):1858–1863. doi:10.1016/j.jhsa.2010.08.030

    Article  PubMed  Google Scholar 

  47. Al-Absi E, Farrokhyar F, Sharma R, Whelan K, Corbett T, Patel M, Ghert M (2010) A systematic review and meta-analysis of oncologic outcomes of pre- versus postoperative radiation in localized resectable soft-tissue sarcoma. Ann Surg Oncol 17(5):1367–1374. doi:10.1245/s10434-009-0885-7

    Article  PubMed  Google Scholar 

  48. Mahmoud O, Wolfson A (2011) Perioperative irradiation in extremity soft tissue sarcoma. Expert Rev Anticancer Ther 11(8):1233–1241. doi:10.1586/era.11.95

    Article  PubMed  Google Scholar 

  49. Sheplan LJ, Juliano JJ (2010) Use of radiation therapy for patients with soft-tissue and bone sarcomas. Cleve Clin J Med 77(Suppl 1):S27–S29. doi:10.3949/ccjm.77.s1.06

    Article  PubMed  Google Scholar 

  50. Tsuchiya H, Uehara K, Sakurakichi K, Watanabe K, Matsubara H, Tomita K (2005) Distraction osteogenesis after irradiation in a rabbit model. J Orthop Sci 10(6):627–633. doi:10.1007/s00776-005-0945-1

    Article  PubMed  Google Scholar 

  51. Hak DJ (2011) Management of aseptic tibial nonunion. J Am Acad Orthop Surg 19(9):563–573

    Article  PubMed  Google Scholar 

  52. Vcelak J, Matejovsky Z Jr, Kofranek I, Kubes R, Lesensky J (2017) Periprosthetic infection of the knee megaprosthesis following a resection of malignant tumours around the knee. Acta Chir Orthop Traumatol Cechoslov 84(1):46–51

    CAS  Google Scholar 

  53. Sala F, Thabet AM, Castelli F, Miller AN, Capitani D, Lovisetti G, Talamonti T, Singh S (2011) Bone transport for postinfectious segmental tibial bone defects with a combined Ilizarov/Taylor spatial frame technique. J Orthop Trauma 25(3):162–168. doi:10.1097/BOT.0b013e3181e5e160

    Article  PubMed  Google Scholar 

  54. Paley D, Maar DC (2000) Ilizarov bone transport treatment for tibial defects. J Orthop Trauma 14(2):76–85

    Article  CAS  PubMed  Google Scholar 

  55. Rozbruch SR, Pugsley JS, Fragomen AT, Ilizarov S (2008) Repair of tibial nonunions and bone defects with the Taylor Spatial Frame. J Orthop Trauma 22(2):88–95. doi:10.1097/BOT.0b013e318162ab49

    Article  PubMed  Google Scholar 

  56. Brinker MR, O’Connor DP (2007) Outcomes of tibial nonunion in older adults following treatment using the Ilizarov method. J Orthop Trauma 21(9):634–642. doi:10.1097/BOT.0b013e318156c2a2

    Article  PubMed  Google Scholar 

  57. Babiak I (2014) Open tibial fractures grade IIIC treated successfully with external fixation, negative-pressure wound therapy and recombinant human bone morphogenetic protein 7. Int Wound J 11(5):476–482. doi:10.1111/j.1742-481X.2012.01112.x

    Article  PubMed  Google Scholar 

  58. Canadell J, Forriol F, Cara JA (1994) Removal of metaphyseal bone tumours with preservation of the epiphysis: physeal distraction before excision. J Bone Joint Surg Br 76(1):127–132

    CAS  PubMed  Google Scholar 

  59. Betz M, Dumont CE, Fuchs B, Exner GU (2012) Physeal distraction for joint preservation in malignant metaphyseal bone tumors in children. Clin Orthop Relat Res 470(6):1749–1754. doi:10.1007/s11999-011-2224-0

    Article  PubMed  Google Scholar 

  60. Tsuchiya H, Tomita K, Minematsu K, Mori Y, Asada N, Kitano S (1997) Limb salvage using distraction osteogenesis: a classification of the technique. J Bone Joint Surg Br 79(3):403–411

    Article  CAS  PubMed  Google Scholar 

  61. Yoshida Y, Osaka S, Tokuhashi Y (2010) Analysis of limb function after various reconstruction methods according to tumor location following resection of pediatric malignant bone tumors. World J Surg Oncol 8:39. doi:10.1186/1477-7819-8-39

    Article  PubMed  PubMed Central  Google Scholar 

  62. Watanabe K, Tsuchiya H, Yamamoto N, Shirai T, Nishida H, Hayashi K, Takeuchi A, Matsubara H, Nomura I (2013) Over 10-year follow-up of functional outcome in patients with bone tumors reconstructed using distraction osteogenesis. J Orthop Sci 18(1):101–109. doi:10.1007/s00776-012-0327-4

    Article  PubMed  Google Scholar 

  63. McCoy TH Jr, Kim HJ, Cross MB, Fragomen AT, Healey JH, Athanasian EA, Rozbruch SR (2013) Bone tumor reconstruction with the Ilizarov method. J Surg Oncol 107(4):343–352. doi:10.1002/jso.23217

    Article  PubMed  Google Scholar 

  64. Healey JH, Zimmerman PA, McDonnell JM, Lane JM (1990) Percutaneous bone marrow grafting of delayed union and nonunion in cancer patients. Clin Orthop Relat Res 256:280–285

    Google Scholar 

  65. Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions: influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87(7):1430–1437. doi:10.2106/JBJS.D.02215

    PubMed  Google Scholar 

Download references

Funding

The authors received no funding for the preparation of this review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Prince.

Ethics declarations

Conflicts of interest

J. Lesensky and D. Prince have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesensky, J., Prince, D.E. Distraction osteogenesis reconstruction of large segmental bone defects after primary tumor resection: pitfalls and benefits. Eur J Orthop Surg Traumatol 27, 715–727 (2017). https://doi.org/10.1007/s00590-017-1998-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-017-1998-5

Keywords

Navigation