Skip to main content
Log in

A real-time 3D electromagnetic navigation system for percutaneous pedicle screw fixation in traumatic thoraco-lumbar fractures: implications for efficiency, fluoroscopic time, and accuracy compared with those of conventional fluoroscopic guidance

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Navigation is becoming more useful in percutaneous pedicle screw fixation (PPSF). The aim of this study was to compare the efficiency, fluoroscopic time, accuracy, and clinical outcomes of PPSF with a novel electromagnetic navigation (EMN) system for thoraco-lumbar (TL) fractures with those of PPSF with conventional C-arm fluoroscopic (CF) guidance.

Methods

A retrospective study was conducted. A total of 162 screws were implanted in 29 patients with the assistance of the EMN system (EMN group), and 220 screws were inserted in 40 patients by using CF guidance (CF group). The duration of surgery, placement time per screw, fluoroscopic time per screw, accuracy of pedicle screw placement, and clinical outcomes were compared between the two groups.

Results

The duration of surgery and placement time per screw in the EMN group were significantly lower than those in the CF group (P < 0.05). The fluoroscopic time per screw in the CF group was significantly longer than that in the EMN group (P < 0.05). The learning curve of PPSF in the EMN group was steeper than that in the CF group. The accuracy of pedicle screw placement in the EMN group was more precise than that in the CF group (P < 0.05). The VAS scores in the EMN group were significantly lower than those in the CF group at one-week postoperatively (P < 0.05).

Conclusion

Compared with PPSF by using conventional fluoroscopic guidance, PPSF with the aid of the EMN system can increase the efficiency and accuracy of pedicle screw placement and reduce the fluoroscopic time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Siebenga J, Leferink V, Segers M, Elzinga M, Bakker F, Haarman H, Rommens P, ten Duis H, Patka PJS (2006) Treatment of traumatic thoracolumbar spine fractures: a multicenter prospective randomized study of operative versus nonsurgical treatment. Spine 31:2881–2890. https://doi.org/10.1097/01.brs.0000247804.91869.1e

    Article  PubMed  Google Scholar 

  2. Gertzbein SJS (1994) Neurologic deterioration in patients with thoracic and lumbar fractures after admission to the hospital. Spine 19:1723–1725. https://doi.org/10.1097/00007632-199408000-00011

    Article  CAS  PubMed  Google Scholar 

  3. Li K, Li Z, Ren X, Xu H, Zhang W, Luo D, Ma J (2016) Effect of the percutaneous pedicle screw fixation at the fractured vertebra on the treatment of thoracolumbar fractures. Int Orthop 40:1103–1110. https://doi.org/10.1007/s00264-016-3156-9

    Article  PubMed  Google Scholar 

  4. Goldstein CL, Macwan K, Sundararajan K, Rampersaud YR (2014) Comparative outcomes of minimally invasive surgery for posterior lumbar fusion: a systematic review. Clin Orthop Relat Res 472:1727–1737. https://doi.org/10.1007/s11999-014-3465-5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kim DY, Lee SH, Chung SK, Lee HY (2005) Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw fixation. Spine 30:123–129

    Article  Google Scholar 

  6. Wang B, Fan Y, Dong J, Wang H, Wang F, Liu Z, Liu H, Feng Y, Chen F, Huang Z, Chen R, Lei W, Wu Z (2017) A retrospective study comparing percutaneous and open pedicle screw fixation for thoracolumbar fractures with spinal injuries. Medicine 96:e8104. https://doi.org/10.1097/md.0000000000008104

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fu TS, Wong CB, Tsai TT, Liang YC, Chen LH, Chen WJ (2008) Pedicle screw insertion: computed tomography versus fluoroscopic image guidance. Int Orthop 32:517–521. https://doi.org/10.1007/s00264-007-0358-1

    Article  PubMed  Google Scholar 

  8. Gebhard F, Kraus M, Schneider E, Arand M, Kinzl L, Hebecker A, Bätz L (2003) Radiation dosage in orthopaedics—a comparison of computer-assisted procedures. Unfallchirurg 106:492–497. https://doi.org/10.1007/s00113-003-0606-9

    Article  CAS  PubMed  Google Scholar 

  9. Shin MH, Ryu KS, Park CK (2012) Accuracy and safety in pedicle screw placement in the thoracic and lumbar spines: comparison study between conventional C-arm fluoroscopy and navigation coupled with O-Arm® guided methods. J Korean Neurosurg Soc 52:204–209. https://doi.org/10.3340/jkns.2012.52.3.204

    Article  PubMed  PubMed Central  Google Scholar 

  10. Urbanski W, Jurasz W, Wolanczyk M, Kulej M, Morasiewicz P, Dragan SL, Zaluski R, Miekisiak G, Dragan SF (2018) Increased radiation but no benefits in pedicle screw accuracy with navigation versus a freehand technique in scoliosis surgery. Clin Orthop Relat Res 476:1020–1027. https://doi.org/10.1007/s11999.0000000000000204

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sun J, Wu D, Wang Q, Wei Y, Yuan F (2020) Pedicle screw insertion: is O-arm-based navigation superior to the conventional freehand technique? A systematic review and meta-analysis. World Neurosurg 144:e87–e99. https://doi.org/10.1016/j.wneu.2020.07.205

    Article  PubMed  Google Scholar 

  12. Pennington Z, Cottrill E, Westbroek EM, Goodwin ML, Lubelski D, Ahmed AK, Sciubba DM (2019) Evaluation of surgeon and patient radiation exposure by imaging technology in patients undergoing thoracolumbar fusion: systematic review of the literature. Spine J 19:1397–1411. https://doi.org/10.1016/j.spinee.2019.04.003

    Article  PubMed  Google Scholar 

  13. Rahmathulla G, Nottmeier EW, Pirris SM, Deen HG, Pichelmann MA (2014) Intraoperative image-guided spinal navigation: technical pitfalls and their avoidance. Neurosurg Focus 36:E3. https://doi.org/10.3171/2014.1.Focus13516

    Article  PubMed  Google Scholar 

  14. Attivissimo F, Lanzolla AML, Carlone S, Larizza P, Brunetti G (2018) A novel electromagnetic tracking system for surgery navigation. Comput Assist Surg (Abingdon, England) 23:42–52. https://doi.org/10.1080/24699322.2018.1529199

    Article  Google Scholar 

  15. Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3:184–201. https://doi.org/10.1007/bf02221591

    Article  CAS  PubMed  Google Scholar 

  16. Konieczny MR, Krauspe R (2019) Navigation versus fluoroscopy in multilevel MIS pedicle screw insertion: separate analysis of exposure to radiation of the surgeon and of the patients. Clin Spine Surg 32:E258–E265. https://doi.org/10.1097/bsd.0000000000000807

    Article  PubMed  Google Scholar 

  17. Wang H, Zhou Y, Li C, Liu J, Xiang L (2017) Comparison of open versus percutaneous pedicle screw fixation using the sextant system in the treatment of traumatic thoracolumbar fractures. Clin Spine Surg 30:E239–E246. https://doi.org/10.1097/bsd.0000000000000135

    Article  PubMed  Google Scholar 

  18. Steffee AD, Sitkowski DJ (1988) Posterior lumbar interbody fusion and plates. Clin Orthop Relat Res 227:99–102

    CAS  PubMed  Google Scholar 

  19. Du JP, Fan Y, Wu QN, Wang DH, Zhang J, Hao DJ (2018) Accuracy of pedicle screw insertion among 3 image-guided navigation systems: systematic review and meta-analysis. World Neurosurg 109:24–30. https://doi.org/10.1016/j.wneu.2017.07.154

    Article  PubMed  Google Scholar 

  20. Wu X, Shi J, Wu J, Cheng Y, Peng K, Chen J, Jiang H (2019) Pedicle screw loosening: the value of radiological imagings and the identification of risk factors assessed by extraction torque during screw removal surgery. J Orthop Surg Res 14:6. https://doi.org/10.1186/s13018-018-1046-0

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wu J, Ao S, Liu H, Wang W, Zheng W, Li C, Zhang C, Zhou Y (2020) Novel electromagnetic-based navigation for percutaneous transforaminal endoscopic lumbar decompression in patients with lumbar spinal stenosis reduces radiation exposure and enhances surgical efficiency compared to fluoroscopy: a randomized controlled trial. Ann Transl Med 8:1215. https://doi.org/10.21037/atm-20-1877

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lin Y, Rao S, Chen B, Zhao B, Wen T, Zhou L, Su G, Du Y, Li Y (2020) Electromagnetic navigation-assisted percutaneous endoscopic foraminoplasty and discectomy for lumbar disc herniation: technical note and preliminary results. Ann Palliat Med 9:3923–3931. https://doi.org/10.21037/apm-20-1956

    Article  PubMed  Google Scholar 

  23. Luo P, Xu LF, Ni WF, Wang XY, Lin Y, Mao FM, Huang QS, Xu HZ, Chi YL (2011) Therapeutic effects and complications of percutaneous pedicle screw fixation for thoracolumbar fractures. Zhonghua wai ke za zhi [Chinese journal of surgery] 49:130–134. https://doi.org/10.3760/cma.j.issn.0529-5815.2011.02.007

    Article  Google Scholar 

  24. Gonzalvo A, Fitt G, Liew S, de la Harpe D, Turner P, Ton L, Rogers MA, Wilde PH (2009) The learning curve of pedicle screw placement: how many screws are enough? Spine 34:E761–E765. https://doi.org/10.1097/BRS.0b013e3181b2f928

    Article  PubMed  Google Scholar 

  25. Ryang YM, Villard J, Obermüller T, Friedrich B, Wolf P, Gempt J, Ringel F, Meyer B (2015) Learning curve of 3D fluoroscopy image-guided pedicle screw placement in the thoracolumbar spine. Spine Journal 15:467–476. https://doi.org/10.1016/j.spinee.2014.10.003

    Article  Google Scholar 

  26. Karkenny AJ, Mendelis JR, Geller DS, Gomez JA (2019) The role of intraoperative navigation in orthopaedic surgery. J Am Acad Orthop Surg 27:e849–e858. https://doi.org/10.5435/jaaos-d-18-00478

    Article  PubMed  Google Scholar 

  27. Sembrano JN, Yson SC, Theismann JJ (2019) Computer navigation in minimally invasive spine surgery. Curr Rev Musculoskelet Med 12:415–424. https://doi.org/10.1007/s12178-019-09577-z

    Article  PubMed  PubMed Central  Google Scholar 

  28. Oyelese A, Telfeian AE, Gokaslan ZL, Kosztowski TA, Choi D, Fridley J, Galgano M (2018) Intraoperative computed tomography navigational assistance for transforaminal endoscopic decompression of heterotopic foraminal bone formation after oblique lumbar interbody fusion. World Neurosurg 115:29–34. https://doi.org/10.1016/j.wneu.2018.03.188

    Article  PubMed  Google Scholar 

  29. Ahmed AS, Ramakrishnan R, Ramachandran V, Ramachandran SS, Phan K, Antonsen EL (2018) Ultrasound diagnosis and therapeutic intervention in the spine. J Spine Surg (Hong Kong) 4:423–432. https://doi.org/10.21037/jss.2018.04.06

    Article  Google Scholar 

  30. Hahn P, Oezdemir S, Komp M, Giannakopoulos A, Heikenfeld R, Kasch R, Merk H, Godolias G, Ruetten S (2015) A New Electromagnetic navigation system for pedicle screws placement: a human cadaver study at the lumbar spine. PLoS ONE 10:e0133708. https://doi.org/10.1371/journal.pone.0133708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sagi HC, Manos R, Park SC, Von Jako R, Ordway NR, Connolly PJ (2003) Electromagnetic field-based image-guided spine surgery part two: results of a cadaveric study evaluating thoracic pedicle screw placement. Spine 28:E351-354. https://doi.org/10.1097/01.Brs.0000086822.76638.76

    Article  CAS  PubMed  Google Scholar 

  32. von Jako RA, Carrino JA, Yonemura KS, Noda GA, Zhue W, Blaskiewicz D, Rajue M, Groszmann DE, Weber G (2009) Electromagnetic navigation for percutaneous guide-wire insertion: accuracy and efficiency compared to conventional fluoroscopic guidance. Neuroimage 47(Suppl 2):T127-132. https://doi.org/10.1016/j.neuroimage.2009.05.002

    Article  Google Scholar 

  33. Sclafani JA, Regev GJ, Webb J, Garfin SR, Kim CW (2011) Use of a quantitative pedicle screw accuracy system to assess new technology: initial studies on O-arm navigation and its effect on the learning curve of percutaneous pedicle screw insertion. SAS J 5:57–62. https://doi.org/10.1016/j.esas.2011.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  34. Benzel EC, Orr RD (2011) A steep learning curve is a good thing! Spine J 11:131–132. https://doi.org/10.1016/j.spinee.2010.12.012

    Article  PubMed  Google Scholar 

  35. Zhou Z, Zhou X, Shan B, Zhou H, Lu Z, Dong Q (2016) Electromagnetic navigation in distal locking of long diaphyseal interlocking intramedullary nailing. J Coll Phys Surg Pak 26:975–979

    Google Scholar 

  36. Wang Y, Han B, Shi Z, Fu Y, Ye Y, Jing J, Li J (2018) Comparison of free-hand fluoroscopic guidance and electromagnetic navigation in distal locking of tibia intramedullary nails. Medicine 97:e11305. https://doi.org/10.1097/md.0000000000011305

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pishnamaz M, Wilkmann C, Na HS, Pfeffer J, Hänisch C, Janssen M, Bruners P, Kobbe P, Hildebrand F, Schmitz-Rode T, Pape HC (2016) Electromagnetic real time navigation in the region of the posterior pelvic ring: an experimental in-vitro feasibility study and comparison of image guided techniques. PLoS ONE 11:e0148199. https://doi.org/10.1371/journal.pone.0148199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lehmann W, Rueger JM, Nuechtern J, Grossterlinden L, Kammal M, Hoffmann M (2015) A novel electromagnetic navigation tool for acetabular surgery. Injury 46(Suppl 4):S71–S74. https://doi.org/10.1016/s0020-1383(15)30021-8

    Article  PubMed  Google Scholar 

  39. Siasios ID, Pollina J, Khan A, Dimopoulos VG (2017) Percutaneous screw placement in the lumbar spine with a modified guidance technique based on 3D CT navigation system. J Spine Surg (Hong Kong) 3:657–665. https://doi.org/10.21037/jss.2017.12.05

    Article  Google Scholar 

  40. Gelalis ID, Paschos NK, Pakos EE, Politis AN, Arnaoutoglou CM, Karageorgos AC, Ploumis A, Xenakis TA (2012) Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J 21:247–255. https://doi.org/10.1007/s00586-011-2011-3

    Article  PubMed  Google Scholar 

  41. Kim YJ, Lenke LG, Bridwell KH, Cho YS, Riew KD (2004) Free hand pedicle screw placement in the thoracic spine: is it safe? Spine 29:333–342; discussion 342. https://doi.org/10.1097/01.brs.0000109983.12113.9b

  42. Narain AS, Hijji FY, Yom KH, Kudaravalli KT, Haws BE, Singh K (2017) Radiation exposure and reduction in the operating room: perspectives and future directions in spine surgery. World J Orthop 8:524–530. https://doi.org/10.5312/wjo.v8.i7.524

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mastrangelo G, Fedeli U, Fadda E, Giovanazzi A, Scoizzato L, Saia B (2005) Increased cancer risk among surgeons in an orthopaedic hospital. Occup Med (Oxford, England) 55:498–500. https://doi.org/10.1093/occmed/kqi048

    Article  Google Scholar 

  44. Rampersaud YR, Foley KT, Shen AC, Williams S, Solomito M (2000) Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine 25:2637–2645. https://doi.org/10.1097/00007632-200010150-00016

    Article  CAS  PubMed  Google Scholar 

  45. Galbusera F, Volkheimer D, Reitmaier S, Berger-Roscher N, Kienle A, Wilke HJ (2015) Pedicle screw loosening: a clinically relevant complication? Eur Spine J 24:1005–1016. https://doi.org/10.1007/s00586-015-3768-6

    Article  PubMed  Google Scholar 

  46. Franke J, Greiner-Perth R, Boehm H, Mahlfeld K, Grasshoff H, Allam Y, Awiszus F (2009) Comparison of a minimally invasive procedure versus standard microscopic discotomy: a prospective randomised controlled clinical trial. Eur Spine J 18:992–1000. https://doi.org/10.1007/s00586-009-0964-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The current study was funded by the Science and Technology Plan Project of Wuhan City (grant no. 2019020701011423), and the Cultivation Project for Medical Science and Technology Youth of PLA (grant no. 18QNP054). This work is also supported by the Natural Science Foundation of China (grant no. 81401802) and funds from China Postdoctoral Science Foundation (grant no. 2016M593042).

Author information

Authors and Affiliations

Authors

Contributions

FX and CJX designed the study and performed the operations. YWY and XJ were involved in drafting the manuscript or revising it critically for important intellectual content. YWY, XJ, ZPY, TJW, and BYW collected the data. YWY analyzed the data and performed the statistics. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Feng Xu or Chengjie Xiong.

Ethics declarations

Conflict interest

The authors declare that they have no competing interests.

Consent for publication

Written informed consent for publication was obtained from all participants.

Ethical approval

This study was performed according to the Helsinki Declaration and was approved by the Ethics Committee of General Hospital of Central Theater Command.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Jiang, X., Wei, T. et al. A real-time 3D electromagnetic navigation system for percutaneous pedicle screw fixation in traumatic thoraco-lumbar fractures: implications for efficiency, fluoroscopic time, and accuracy compared with those of conventional fluoroscopic guidance. Eur Spine J 31, 46–55 (2022). https://doi.org/10.1007/s00586-021-06948-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-021-06948-4

Keywords

Navigation