Skip to main content

Advertisement

Log in

Population-averaged MRI atlases for automated image processing and assessments of lumbar paraspinal muscles

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Growing evidence suggests an association between lumbar paraspinal muscle degeneration and low back pain (LBP). Currently, time-consuming and laborious manual segmentations of paraspinal muscles are commonly performed on magnetic resonance imaging (MRI) axial scans. Automated image analysis algorithms can mitigate these drawbacks, but they often require individual MRIs to be aligned to a standard “reference” atlas. Such atlases are well established in automated neuroimaging analysis. Our aim was to create atlases of similar nature for automated paraspinal muscle measurements.

Methods

Lumbosacral T2-weighted MRIs were acquired from 117 patients who experienced LBP, stratified by gender and age group (30–39, 40–49, and 50–59 years old). Axial MRI slices of the L4–L5 and L5–S1 levels at mid-disc were obtained and aligned using group-wise linear and nonlinear image registration to produce a set of unbiased population-averaged atlases for lumbar paraspinal muscles.

Results

The resulting atlases represent the averaged morphology and MRI intensity features of the corresponding cohorts. Differences in paraspinal muscle shapes and fat infiltration levels with respect to gender and age can be visually identified from the population-averaged data from both linear and nonlinear registrations.

Conclusion

We constructed a set of population-averaged atlases for developing automated algorithms to help analyze paraspinal muscle morphometry from axial MRI scans. Such an advancement could greatly benefit the fields of paraspinal muscle and LBP research.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Balague F, Mannion AF, Pellise F, Cedraschi C (2012) Non-specific low back pain. Lancet 379(9814):482–491. https://doi.org/10.1016/S0140-6736(11)60610-7

    Article  PubMed  Google Scholar 

  2. Deyo RA, Weinstein JN (2001) Low back pain. N Engl J Med 344(5):363–370. https://doi.org/10.1056/NEJM200102013440508

    Article  CAS  PubMed  Google Scholar 

  3. Refshauge KM, Maher CG (2006) Low back pain investigations and prognosis: a review. Br J Sports Med 40(6):494–498. https://doi.org/10.1136/bjsm.2004.016659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zotti MGT, Boas FV, Clifton T, Piche M, Yoon WW, Freeman BJC (2017) Does pre-operative magnetic resonance imaging of the lumbar multifidus muscle predict clinical outcomes following lumbar spinal decompression for symptomatic spinal stenosis? Eur Spine J 26(10):2589–2597. https://doi.org/10.1007/s00586-017-4986-x

    Article  PubMed  Google Scholar 

  5. Shahidi B, Parra CL, Berry DB, Hubbard JC, Gombatto S, Zlomislic V, Allen RT, Hughes-Austin J, Garfin S, Ward SR (2017) Contribution of lumbar spine pathology and age to paraspinal muscle size and fatty infiltration. Spine 42(8):616–623. https://doi.org/10.1097/BRS.0000000000001848

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hodges P, Holm AK, Hansson T, Holm S (2006) Rapid atrophy of the lumbar multifidus follows experimental disc or nerve root injury. Spine 31(25):2926–2933. https://doi.org/10.1097/01.brs.0000248453.51165.0b

    Article  PubMed  Google Scholar 

  7. Yarjanian JA, Fetzer A, Yamakawa KS, Tong HC, Smuck M, Haig A (2013) Correlation of paraspinal atrophy and denervation in back pain and spinal stenosis relative to asymptomatic controls. PM&R 5(1):39–44. https://doi.org/10.1016/j.pmrj.2012.08.017

    Article  Google Scholar 

  8. Ranger TA, Cicuttini FM, Jensen TS, Peiris WL, Hussain SM, Fairley J, Urquhart DM (2017) Are the size and composition of the paraspinal muscles associated with low back pain? A systematic review. Spine J 17(11):1729–1748. https://doi.org/10.1016/j.spinee.2017.07.002

    Article  PubMed  Google Scholar 

  9. Takayama K, Kita T, Nakamura H, Kanematsu F, Yasunami T, Sakanaka H, Yamano Y (2016) New predictive index for lumbar paraspinal muscle degeneration associated with aging. Spine 41(2):E84–E90. https://doi.org/10.1097/BRS.0000000000001154

    Article  PubMed  Google Scholar 

  10. Fortin M, Videman T, Gibbons LE, Battie MC (2014) Paraspinal muscle morphology and composition: a 15-year longitudinal magnetic resonance imaging study. Med Sci Sports Exerc 46(5):893–901. https://doi.org/10.1249/MSS.0000000000000179

    Article  CAS  PubMed  Google Scholar 

  11. Fortin M, Omidyeganeh M, Battie MC, Ahmad O, Rivaz H (2017) Evaluation of an automated thresholding algorithm for the quantification of paraspinal muscle composition from MRI images. Biomed Eng Online 16(1):61. https://doi.org/10.1186/s12938-017-0350-y

    Article  PubMed  PubMed Central  Google Scholar 

  12. Young AA, Frangi AF (2009) Computational cardiac atlases: from patient to population and back. Exp Physiol 94(5):578–596. https://doi.org/10.1113/expphysiol.2008.044081

    Article  PubMed  Google Scholar 

  13. Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, Brain Development Cooperative G (2011) Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54(1):313–327. https://doi.org/10.1016/j.neuroimage.2010.07.033

    Article  PubMed  Google Scholar 

  14. Xiao Y, Fonov V, Beriault S, Al Subaie F, Chakravarty MM, Sadikot AF, Pike GB, Collins DL (2015) Multi-contrast unbiased MRI atlas of a Parkinson’s disease population. Int J Comput Assist Radiol Surg 10(3):329–341. https://doi.org/10.1007/s11548-014-1068-y

    Article  PubMed  Google Scholar 

  15. Cabezas M, Oliver A, Llado X, Freixenet J, Cuadra MB (2011) A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Programs Biomed 104(3):e158–e177. https://doi.org/10.1016/j.cmpb.2011.07.015

    Article  PubMed  Google Scholar 

  16. May A, Gaser C (2006) Magnetic resonance-based morphometry: a window into structural plasticity of the brain. Curr Opin Neurol 19(4):407–411. https://doi.org/10.1097/01.wco.0000236622.91495.21

    Article  PubMed  Google Scholar 

  17. Xiao Y, Bailey L, Chakravarty MM, Beriault S, Sadikot AF, Pike GB, Collins DL (2012) Atlas-based segmentation of the subthalamic nucleus, red nucleus, and substantia nigra for deep brain stimulation by incorporating multiple MRI contrasts. Paper presented at the Proceedings of the third international conference on Information Processing in Computer-Assisted Interventions, Pisa, Italy

    Chapter  Google Scholar 

  18. Xiao Y, Fonov VS, Beriault S, Gerard I, Sadikot AF, Pike GB, Collins DL (2015) Patch-based label fusion segmentation of brainstem structures with dual-contrast MRI for Parkinson’s disease. Int J Comput Assist Radiol Surg 10(7):1029–1041. https://doi.org/10.1007/s11548-014-1119-4

    Article  PubMed  Google Scholar 

  19. Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29(6):1310–1320. https://doi.org/10.1109/TMI.2010.2046908

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nyul LG, Udupa JK, Zhang X (2000) New variants of a method of MRI scale standardization. IEEE Trans Med Imaging 19(2):143–150. https://doi.org/10.1109/42.836373

    Article  CAS  PubMed  Google Scholar 

  21. Peng YG, Ganesh A, Wright J, Xu WL, Ma Y (2012) RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans Pattern Anal 34(11):2233–2246. https://doi.org/10.1109/Tpami.2011.282

    Article  Google Scholar 

  22. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3):2033–2044. https://doi.org/10.1016/j.neuroimage.2010.09.025

    Article  PubMed  Google Scholar 

  23. Ashburner J, Hutton C, Frackowiak R, Johnsrude I, Price C, Friston K (1998) Identifying global anatomical differences: deformation-based morphometry. Hum Brain Mapp 6(5–6):348–357

    Article  CAS  Google Scholar 

  24. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sanchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005

    Article  PubMed  Google Scholar 

  25. Shattuck DW, Mirza M, Adisetiyo V, Hojatkashani C, Salamon G, Narr KL, Poldrack RA, Bilder RM, Toga AW (2008) Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 39(3):1064–1080. https://doi.org/10.1016/j.neuroimage.2007.09.031

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This project was partly funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN-2015-04136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiming Xiao.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 335 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Fortin, M., Battié, M.C. et al. Population-averaged MRI atlases for automated image processing and assessments of lumbar paraspinal muscles. Eur Spine J 27, 2442–2448 (2018). https://doi.org/10.1007/s00586-018-5704-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-018-5704-z

Keywords

Navigation