Skip to main content
Log in

Experimental validation of a patient-specific model of orthotic action in adolescent idiopathic scoliosis

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Personalized modeling of brace action has potential in improving brace efficacy in adolescent idiopathic scoliosis (AIS). Model validation and simulation uncertainty are rarely addressed, limiting the clinical implementation of personalized models. We hypothesized that a thorough validation of a personalized finite element model (FEM) of brace action would highlight potential means of improving the model.

Methods

Forty-two AIS patients were included retrospectively and prospectively. Personalized FEMs of pelvis, spine and ribcage were built from stereoradiographies. Brace action was simulated through soft cylindrical pads acting on the ribcage and through displacements applied to key vertebrae. Simulation root mean squared errors (RMSEs) were calculated by comparison with the actual brace action (quantified through clinical indices, vertebral positions and orientations) observed in in-brace stereoradiographies.

Results

Simulation RMSEs of Cobb angle and vertebral apical axial rotation was lower than measurement uncertainty in 79 % of the patients. Pooling all patients and clinical indices, 87 % of the indices had lower RMSEs than the measurement uncertainty.

Conclusions

In-depth analysis suggests that personalization of spinal functional units mechanical properties could improve the simulation’s accuracy, but the model gave good results, thus justifying further research on its clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dubousset J (1994) Three-dimensional analysis of the scoliotic deformity. In: Weinstein SL (ed) The pediatric spine: principles and practice. Raven Press Ltd, New york

  2. Asher M, Burton D (2006) Adolescent idiopathic scoliosis: natural history and long term treatment effects. Scoliosis 1:2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Weinstein SL, Dolan LA, Wright JG, Dobbs MB (2013) Effects of bracing in adolescents with idiopathic scoliosis. New Engl J Med 369:1512–1521. doi:10.1056/NEJMoa1307337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lou EM, Hill D, Raso J, Moreau M, Hedden D (2015) How quantity and quality of brace wear affect the brace treatment outcomes for AIS. Eur Spine J. doi:10.1007/s00586-015-4233-2

    Google Scholar 

  5. Courvoisier A, Drevelle X, Vialle R, Dubousset J, Skalli W (2013) 3D analysis of brace treatment in idiopathic scoliosis. Eur Spine J 22:2449–2455. doi:10.1007/s00586-013-2881-7

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jalalian A, Gibson I, Tay EH (2013) Computational biomechanical modeling of scoliotic spine: challenges and opportunities. Spine Deform 1:401–411. doi:10.1016/j.jspd.2013.07.009

    Article  Google Scholar 

  7. Wang W, Baran GR, Betz RR, Samdani AF, Pahys JM, Cahill PJ (2014) The use of finite element models to assist understanding and treatment for scoliosis: a review paper. Spine Deform 2:10–27. doi:10.1016/j.jspd.2013.09.007

    Article  Google Scholar 

  8. Aubert B, Vergari C, Ilharreborde B, Courvoisier A, Skalli W (2016) 3-D Reconstruction of rib cage geometry from biplanar radiographs using a statistical parametric model approach. Comput Methods Biomech Biomed Eng Imaging Vis. doi:10.1080/21681163.2014.913990

    Google Scholar 

  9. Humbert L, De Guise JA, Aubert B, Godbout B, Skalli W (2009) 3-D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys 31:681–687. doi:10.1016/j.medengphy.2009.01.003

    Article  CAS  PubMed  Google Scholar 

  10. Cobetto N, Aubin CE, Clin J, Le May S, Desbiens-Blais F, Labelle H, Parent S (2014) Braces optimized with computer-assisted design and simulations are lighter, more comfortable, and more efficient than plaster-cast braces for the treatment of adolescent idiopathic scoliosis. Spine Deform 2:276–284. doi:10.1016/j.jspd.2014.03.005

    Article  Google Scholar 

  11. Gignac D, Aubin CÉ, Dansereau J, Labelle H (2000) Optimization method for 3-D bracing correction of scoliosis using a finite element model. Eur Spine J 9:185–190. doi:10.1007/s005860000135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Desbiens-Blais F, Clin J, Parent S, Labelle H, Aubin CE (2012) New brace design combining CAD/CAM and biomechanical simulation for the treatment of adolescent idiopathic scoliosis. Clin Biomech 27:999–1005. doi:10.1016/j.clinbiomech.2012.08.006

    Article  Google Scholar 

  13. Vergari C, Ribes G, Aubert B, Adam C, Miladi L, Ilharreborde B, Abelin-Genevois K, Rouch P, Skalli W (2015) Evaluation of a patient-specific finite element model to simulate conservative treatment in adolescent idiopathic scoliosis. Spine Deform 3:4–11. doi:10.1016/j.jspd.2014.06.014

    Article  Google Scholar 

  14. Steffen JS, Obeid I, Aurouer N, Hauger O, Vital JM, Dubousset J, Skalli W (2010) 3-D postural balance with regard to gravity line: an evaluation in the transversal plane on 93 patients and 23 asymptomatic volunteers. Eur Spine J 19:760–767. doi:10.1007/s00586-009-1249-5

    Article  PubMed  Google Scholar 

  15. Mitton D, Deschênes S, Laporte S, Godbout B, Bertrand S, de Guise JA, Skalli W (2006) 3-D reconstruction of the pelvis from bi-planar radiography. Comput Methods Biomech Biomed Eng 9:1–5. doi:10.1080/10255840500521786

    Article  CAS  Google Scholar 

  16. Descrimes JL, Aubin CE, Skalli W, Zeller R, Danserau J, Lavaste F (1995) Introduction des facettes articulaires dans une modélisation par éléments finis de la colonne vertébrale et du thorax scoliotique: aspects mécaniques. Rachis 7:301–314

    Google Scholar 

  17. Pezowicz C, Glowacki M (2012) The mechanical properties of human ribs in young adult. Acta of bioengineering and biomechanics 14:53–60

    PubMed  Google Scholar 

  18. Sandoz B, Badina A, Laporte S, Lambot K, Mitton D, Skalli W (2013) Quantitative geometric analysis of rib, costal cartilage and sternum from childhood to teenagehood. Med Biol Eng Comput 51:971–979. doi:10.1007/s11517-013-1070-5

    Article  PubMed  Google Scholar 

  19. Nérot A, Choisne J, Amabile C, Travert C, Pillet H, Wang X, Skalli W (2015) A 3-D reconstruction method of the body envelope from biplanar X-rays: evaluation of its accuracy and reliability. J Biomech 48:4322–4326. doi:10.1016/j.jbiomech.2015.10.044

    Article  PubMed  Google Scholar 

  20. Lebel D, Al-Aubaidi Z, Shin EJ, Howard A, Zeller R (2013) Three-dimensional analysis of brace biomechanical efficacy for patients with AIS. Eur Spine J 22:2445–2448. doi:10.1007/s00586-013-2921-3

    Article  PubMed  PubMed Central  Google Scholar 

  21. Malfair D, Flemming AK, Dvorak MF, Munk PL, Vertinsky AT, Heran MK, Graeb DA (2010) Radiographic evaluation of scoliosis: review. Am J Roentgenol 194:S8–S22. doi:10.2214/AJR.07.7145

    Article  Google Scholar 

  22. Schwab FJ, Lafage V, Farcy JP, Bridwell KH, Glassman S, Shainline MR (2008) Predicting outcome and complications in the surgical treatment of adult scoliosis. Spine 33:2243–2247. doi:10.1097/BRS.0b013e31817d1d4e

    Article  PubMed  Google Scholar 

  23. Vergari C, Dubois G, Vialle R, Gennisson JL, Tanter M, Dubousset J, Rouch P, Skalli W (2016) Lumbar annulus fibrosus biomechanical characterization in healthy children by ultrasound shear wave elastography. Eur Radiol 26:1213–1217. doi:10.1007/s00330-015-3911-0

    Article  PubMed  Google Scholar 

  24. Lafon Y, Lafage V, Steib JP, Dubousset J, Skalli W (2010) In vivo distribution of spinal intervertebral stiffness based on clinical flexibility tests. Spine 35:186–193. doi:10.1097/BRS.0b013e3181b664b1

    Article  PubMed  Google Scholar 

  25. Little JP, Adam CJ (2009) The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending. Spine 34:E76–E82. doi:10.1097/BRS.0b013e31818ad584

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the ParisTech BiomecAM chair program on subject-specific musculoskeletal modeling (with the support of ParisTech and Yves Cotrel Foundations, Société Générale, Proteor and Covea) and to the “Investissements d’Avenir” program for funding the CORSIN Project, in collaboration between Proteor and our institution. We would also like to thank Ms Sonia Simoes for her technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Vergari.

Ethics declarations

Conflict of interest

No conflict of interest to disclose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergari, C., Courtois, I., Ebermeyer, E. et al. Experimental validation of a patient-specific model of orthotic action in adolescent idiopathic scoliosis. Eur Spine J 25, 3049–3055 (2016). https://doi.org/10.1007/s00586-016-4511-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4511-7

Keywords

Navigation