Skip to main content

Advertisement

Log in

Plasmacytoid dendritic cells and memory T cells infiltrate true sequestrations stronger than subligamentous sequestrations: evidence from flow cytometric analysis of disc infiltrates

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Herniated nucleus pulposus has been considered to induce an adaptive immune response. Antigen recognition by antigen-presenting-cells (APCs) represents an important step within manifestation of an adaptive immune response. Macrophages have been assumed to function as APC, while importance of plasmacytoid dendritic cells for initiation of an immune response directed towards herniated nucleus pulposus has never been examined. The aim of the present study was to assess importance of plasmacytoid dendritic cells for initiation of immune response directed towards herniated discs.

Methods

Fifteen patients with true sequestrations and three patients with subligamentous sequestrations underwent surgery after their neurological examinations. Disc material was harvested, weighted and digested for 90 min. Separated single cells were counted, stained for plasmacytoid dendritic cells (CD123+CD4+), macrophages (CD14+CD11c+) and memory T cells (CD4+CD45RO+) and analysed by flow cytometry. Both patient groups were compared in cell proportions. Furthermore, patients with true sequestrations (TRUE patients) were subdivided into subgroups based on severity of muscle weakness and results in straight leg raising (SLR) test. Subgroups were compared in cell proportions.

Results

Plasmacytoid dendritic cells and memory T cells infiltrated true sequestrations stronger than the subligamentous sequestration and plasmacytoid dendritic cells predominated over macrophages in true sequestrations. Highest proportions of plasmacytoid dendritic cells were detected in infiltrates of patients having true sequestrations, severe muscle weakness and negative result in SLR test.

Conclusions

The findings of the present study indicate that plasmacytoid dendritic cells are involved in initiation of an immune response directed towards herniated nucleus pulposus, while macrophages may reinforce the manifested immune response and mediate disc resorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mixter WJ, Barr J (1934) Rupture of the intervertebral disc with involvement of the spinal canal. N Engl J Med 211:210–215

    Article  Google Scholar 

  2. Rydevik B, Brown MD, Lundborg G (1984) Pathoanatomy and pathophysiology of nerve root compression. Spine 9:7–15

    Article  CAS  PubMed  Google Scholar 

  3. Garfin SR, Rydevik BL, Brown RA (1991) Compressive neuropathy of spinal nerve roots. A mechanical or biological problem? Spine 16:162–166

    CAS  PubMed  Google Scholar 

  4. Olmarker K, Larsson K (1998) Tumor necrosis factorα and nucleus pulposus-induced nerve root injury. Spine 23:2538–2544

    Article  CAS  PubMed  Google Scholar 

  5. Geiss A, Larsson K, Junevik K et al (2009) Autologous nucleus pulposus primes T cells to develop into interleukin-4-producing effector cells: an experimental study on the autoimmune properties of nucleus pulposus. J Orthop Res 27:97–103

    Article  PubMed  Google Scholar 

  6. Bobechko WP, Hirsch C (1965) Auto-immune response to nucleus pulposus in the rabbit. J Bone Joint Surg 47:574–580

    CAS  Google Scholar 

  7. Gertzbein SD, Trait JH, Devlin SR (1977) The stimulation of lymphocytes by nucleus pulposus in patients with degenerative disc disease of the lumbar spine. Clin Orthop Relat Res 123:149–154

    PubMed  Google Scholar 

  8. Ahn SH, Ahn MW, Byun WM (2000) Effect of the Transligamentous extension of lumbar disc herniation on their regression and the clinical outcome of sciatica. Spine 25:475–480

    Article  CAS  PubMed  Google Scholar 

  9. Brock M, Patt S, Mayer HM (1992) The form and structure of the extruded disc. Spine 17:1457–1461

    Article  CAS  PubMed  Google Scholar 

  10. Abbas AK, Lichtman AH, Pillai S (2012) Cellular and molecular immunology. Saunders/Elsevier, Philadelphia

    Google Scholar 

  11. Saal JS, Franson RC, Dobrow R et al (1990) High levels of inflammatory phospholipase A2 activity in lumbar disc herniations. Spine 15:674–678

    Article  CAS  PubMed  Google Scholar 

  12. Kobayashi S, Yoshizawa H, Yamada S (2004) Pathology of lumbar nerve root compression Part 1: intraradicular inflammatory changes induced by mechanical compression. J Orthop Res 22:170–179

    Article  PubMed  Google Scholar 

  13. Cui JG, Holmin S, Mathiesen T et al (2000) Possible role of inflammatory mediators in tactile hypersensitivity in rat models of mononeuropathy. Pain 88:239–248

    Article  CAS  PubMed  Google Scholar 

  14. Boos N, Rieder R, Schade V et al (1995) The diagnostic accuracy of magnetic resonance imaging, work perception, and psychosocial factors in identifying symptomatic disc herniations. Spine 20:2613–2625

    Article  CAS  PubMed  Google Scholar 

  15. Virri J, Grönblad M, Seitsalo S et al (2001) Comparison of the prevalence of inflammatory cells in subtypes of disc herniations and associations with straight leg raising. Spine 26:2311–2315

    Article  CAS  PubMed  Google Scholar 

  16. Grönblad M, Virri J, Seitsalo S et al (2000) Inflammatory cells, motor weakness, and straight leg raising in transligamentous disc herniations. Spine 25:2803–2807

    Article  PubMed  Google Scholar 

  17. Shamji MF, Setton LA, Jarvis W et al (2010) Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues. Arthritis Rheum 62:1974–1982

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rothoerl R, Woertgen C, Holzschuh M et al (1998) Macrophage tissue infiltration, clinical symptoms, and signs in patients with lumbar disc herniation. A clinicopathological study on 179 patients. Acta Neurochir 140:1245–1248

    Article  CAS  PubMed  Google Scholar 

  19. Kawaguchi S, Yamashita T, Yokogushi K et al (2001) Immunophenotypic analysis of the inflammatory infiltrates in herniated intervertebral discs. Spine 26:1209–1214

    Article  CAS  PubMed  Google Scholar 

  20. Colonna M, Trinchieri G, Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5:1219–1226

    Article  CAS  PubMed  Google Scholar 

  21. Andersson GB, Weinstein JN (1996) Disc herniation. Spine 21(Suppl 24):1S

  22. Masaryk TJ, Ross JS, Modic MT et al (1988) High-resolution MR imaging of sequestered lumbar inter-vertebral disks. Am J Roentgenol 150:1155–1162

    Article  CAS  Google Scholar 

  23. Frankel HL, Hancock DO, Hyslop G et al (1969) The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. I Paraplegia 7:179–192

    Article  CAS  PubMed  Google Scholar 

  24. Balaji VR, Chin KF, Tucker S (2014) Recovery of severe motor deficit secondary to herniated lumbar disc prolapse: is surgical intervention important? A systematic review. Eur Spine J 23:1968–1977

    Article  CAS  PubMed  Google Scholar 

  25. Hornsby PJ (1980) Regulation of cytochrome P-450 supported 11-hydroxylation of deoxycortisol by steroids, oxygen, and antioxidants in adrenocortical cell cultures. J Biol Chem 255:4020–4027

    CAS  PubMed  Google Scholar 

  26. Facchetti F, Vermi W, Mason D, Colonna M (2003) The plasmacytoid monocytes/interferon producing cells. Virchows Arch 443:703–717

    Article  PubMed  Google Scholar 

  27. Bland M (2000) An introduction to medical statistics, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  28. Risbud MV, Shapiro IM (2014) Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol 10:44–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Buckwalter JA (1995) Aging and degeneration of the human intervertebral disc. Spine 20:1307–1314

    Article  CAS  PubMed  Google Scholar 

  30. Holm S, Nachemson A (1988) Nutrition of the intervertebral disc: acute effects of cigarette smoking. An experimental animal study. Upsala J Med 93:91–99

    Article  CAS  Google Scholar 

  31. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kapsenberg ML (2003) Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 3:984–993

    Article  CAS  PubMed  Google Scholar 

  33. Liu YJ (2005) IPC: professional type I interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306

    Article  CAS  PubMed  Google Scholar 

  34. Swiecki M, Colonna M (2015) The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 15:471–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gilliet M, Cao W, Liu YJ (2008) Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 8:594–606

    Article  CAS  PubMed  Google Scholar 

  36. Lövgren T, Eloranta M-L, Bave U, Alm GV, Rönnblom L (2004) Induction of Interferon- production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG. Arthritis Rheum 50:1861–1872

    Article  PubMed  Google Scholar 

  37. Villadangos JA, Young L (2008) Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 29:352–361

    Article  CAS  PubMed  Google Scholar 

  38. Stirling A, Worthington T, Rafiq M, Lambert PA, Elliot TSJ (2001) Association between sciatica and Propionibacterium acnes. Lancet 357:2014–2025

    Article  Google Scholar 

  39. Gank R, Rao PJ, Phan K, Mobbs RJ (2015) Can bacterial infection by low virulent organisms be a plausible cause for symptomatic disc degeneration? Spine 40:E587–E592

    Article  Google Scholar 

  40. Lotz JC, Chin JR (2000) Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading. Spine 25:1477–1483

    Article  CAS  PubMed  Google Scholar 

  41. Bibby SRS, Urban JPG (2004) Effect of nutrient deprivation on the viability of intervertebral disc cells. Eur Spine J 13:695–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Satoh K, Konno S, Nishiyama K et al (1999) Presence and distribution of antigen-antibody complexes in the herniated nucleus pulposus. Spine 24:1980–1984

    Article  CAS  PubMed  Google Scholar 

  43. Klawitter M, Hakozaki M, Kobayashi H et al (2014) Expression and regulation of toll-like receptors (TLRs) in human intervertebral disc cells. Eur Spine J 23:1878–1891

    Article  PubMed  Google Scholar 

  44. Cella M, Jarrossay D, Facchetti F et al (1999) Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature Med 5:919–923

    Article  CAS  PubMed  Google Scholar 

  45. Bondue B, Wittamer V, Parmentier M (2011) Chemerin and its receptors in leukocyte trafficking, inflammation and metabolism. Cytokine Growth Factor Rev 22:331–338

    Article  CAS  PubMed  Google Scholar 

  46. Doita M, Kanatani T, Ozaki T, Matsui N, Kurosaka M, Yoshiya S (2001) Influence of macrophage infiltration of herniated disc tissue on the production of matrix metalloproteinases leading to disc resorption. Spine 26:1522–1527

    Article  CAS  PubMed  Google Scholar 

  47. Ikeda T, Nakamura T, Kikuchi T, Umeda S, Senda H, Takagi K (1996) Pathomechanism of spontaneous regression of the herniated lumbar disc: histologic and immunohistochemical study. J Spinal Disord 9:136–140

    Article  CAS  PubMed  Google Scholar 

  48. Campbell DJ, Koch MA (2011) Phenotypical and functional specialization of FOXP3+regulatory T cells. Nat Rev Immunol 11:119–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rissoan MC, Soumelis V, Kadowaki N et al (1999) Reciprocal control of T helper cell and dendritic cell differentiation. Science 283:1183–1186

    Article  CAS  PubMed  Google Scholar 

  50. Agak GW, Qin M, Nobe J et al (2014) Propionibacterium acnes induces an IL-17 response in acne vulgaris that is regulated by vitamin A and vitamin D. J Invest Dermatol 134:366–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shin MS, Lee N, Kang I (2011) Effector T cell subsets in systemic lupus erythematosus: update focusing in TH17 cells. Curr Opin Rheumatol 23:444–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Park JB, Chang H, Kim YS (2002) The pattern of interleukin-12 and T-helper types 1 and 2 cytokine expression in herniated lumbar disc tissue. Spine 27:2125–2128

    Article  PubMed  Google Scholar 

  53. Gilfillan AM, Tkaczyk C (2006) Integrated signalling pathways for mast-cell activation. Nat Rev Immunol 6:218–230

    Article  CAS  PubMed  Google Scholar 

  54. Garcia-Faroldi G, Rönnberg E, Orro A et al (2013) ADAMTS: novel proteases expressed by activated mast cells. Biol Chem 394:291–305

    Article  CAS  PubMed  Google Scholar 

  55. Geiss A, Larsson K, Rydevik B et al (2007) Autoimmune properties of nucleus pulposus.An experimental study in pigs. Spine 32:168–173

    Article  PubMed  Google Scholar 

  56. Richards JO, Treisman J, Garlie N et al (2012) Flow cytometry assessment of residual melanoma cells in tumor-infiltrating lymphocytes cultures. Cytometry A 81:374–381

    Article  PubMed  Google Scholar 

  57. Waymouth C (1974) To disaggregate or not to disaggregate injury and cell disaggregation, transient or permanent? In Vitro 10:97–111

    Article  CAS  PubMed  Google Scholar 

  58. Abuzakouk M, Feighery C, O’Farrelly C (1996) Collagenase and Dispase enzymes disrupt lymphocyte surface molecules. J Immunol Methods 194:211–216

    Article  CAS  PubMed  Google Scholar 

  59. Lasfargues EY, Moore DH (1971) A method for the continuous cultivation of mammary epithelium. In Vitro 7:21–25

    Article  CAS  PubMed  Google Scholar 

  60. Delaney TJ, Rowlingson JC, Carron H, Butler A (1980) Epidural steroid effects on nerves and meninges. Anesth Analg 59:610–614

    CAS  PubMed  Google Scholar 

  61. Olmarker K, Byröd G, Cornefjord M et al (1994) Effects of Methylprednisolone on nucleus pulposus-induced nerve root injury. Spine 19:1803–1808

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by grants from the German Research Foundation (GE 1232/5-1) and the University Hospital of Cologne, Department of Orthopaedics and Traumatology, D-50937 Köln, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Geiss.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geiss, A., Sobottke, R., Delank, K.S. et al. Plasmacytoid dendritic cells and memory T cells infiltrate true sequestrations stronger than subligamentous sequestrations: evidence from flow cytometric analysis of disc infiltrates. Eur Spine J 25, 1417–1427 (2016). https://doi.org/10.1007/s00586-015-4325-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-015-4325-z

Keywords

Navigation