Skip to main content
Log in

Relationship between sagittal spinal alignment and the incidence of vertebral fracture in menopausal women with osteoporosis: a multicenter longitudinal follow-up study

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To investigate the relationship between sagittal spinal alignment and the incidence of vertebral fracture in patients with osteoporosis.

Methods

A cohort of 1,044 postmenopausal women with osteoporosis were prospectively observed for the incidence of lumbar vertebral fracture. Baseline characteristics of the subjects were recorded, including age, year post-menopause, body height and weight, lumbar spine BMD (LSBMD) and femoral neck BMD (FNBMD). Patients with radiologically diagnosed lumbar vertebral fractures were assigned to the fracture group, and 150 randomly selected participants were assigned to the non-fracture group. Parameters depicting sagittal spinal alignment, including sacral slope (SS), pelvic tilt, pelvic incidence (PI), thoracic kyphpsis, lumbar lordosis (LL), lumbar lordosis index (LLI) and sagittal vertical axis, were measured for both groups. Comparison between the two groups was carried out by Student’s t test. Variables showing significant differences were entered into a logistic regression analysis to determine the independent risk factors.

Results

Patients with fracture events had significantly lower LSBMD as well as a significantly longer year post-menopause. Besides, patients with vertebral fracture were found to have significantly lower LL, LLI, SS and PI. Regression analysis showed that LSBMD (OR = 0.27), LL (OR = 0.3), LLI (OR = 0.43) and PI (OR = 0.67) had significant associations with the risk of vertebral fracture.

Conclusions

Osteoporosis patients with low LL, LLI, and PI could be at high risk of lumbar vertebral fracture. In addition to BMD, the abnormal sagittal spinal profile should also be taken into consideration when predicting the incidence of vertebral fracture in such patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jackson SA, Tenenhouse A, Robertson L (2000) Vertebral fracture definition from population-based data: preliminary results from the Canadian Multicenter Osteoporosis Study (CaMos). Osteoporos Int 11:680–687

    Article  CAS  PubMed  Google Scholar 

  2. Ferrar L, Roux C, Felsenberg D, Gluer CC, Eastell R (2012) Association between incident and baseline vertebral fractures in European women: vertebral fracture assessment in the Osteoporosis and Ultrasound Study (OPUS). Osteoporos Int 23:59–65

    Article  CAS  PubMed  Google Scholar 

  3. Imai K (2011) Vertebral fracture risk and alendronate effects on osteoporosis assessed by a computed tomography-based nonlinear finite element method. J Bone Miner Metab 29:645–651

    Article  CAS  PubMed  Google Scholar 

  4. Roux C, Baron G, Audran M, Breuil V, Chapurlat R, Cortet B, Fardellone P, Tremollieres F, Ravaud P (2011) Influence of vertebral fracture assessment by dual-energy X-ray absorptiometry on decision-making in osteoporosis: a structured vignette survey. Rheumatology (Oxford) 50:2264–2269

    Article  Google Scholar 

  5. Begerow B, Pfeifer M, Pospeschill M, Scholz M, Schlotthauer T, Lazarescu A, Pollaehne W, Minne HW (1999) Time since vertebral fracture: an important variable concerning quality of life in patients with postmenopausal osteoporosis. Osteoporos Int 10:26–33

    Article  CAS  PubMed  Google Scholar 

  6. Kushida K, Fukunaga M, Kishimoto H, Shiraki M, Itabashi A, Inoue T, Kaneda K, Morii H, Nawata H, Yamamoto K, Ohashi Y, Orimo H (2004) A comparison of incidences of vertebral fracture in Japanese patients with involutional osteoporosis treated with risedronate and etidronate: a randomized, double-masked trial. J Bone Miner Metab 22:469–478

    CAS  PubMed  Google Scholar 

  7. Wilson S, Sharp CA, Davie MW (2012) Health-related quality of life in patients with osteoporosis in the absence of vertebral fracture: a systematic review. Osteoporos Int 23:2749–2768

    Article  CAS  PubMed  Google Scholar 

  8. Gabriel SE, Tosteson AN, Leibson CL, Crowson CS, Pond GR, Hammond CS, Melton LR (2002) Direct medical costs attributable to osteoporotic fractures. Osteoporos Int 13:323–330

    Article  CAS  PubMed  Google Scholar 

  9. Pluijm SM, Tromp AM, Smit JH, Deeg DJ, Lips P (2000) Consequences of vertebral deformities in older men and women. J Bone Miner Res 15:1564–1572

    Article  CAS  PubMed  Google Scholar 

  10. Shin CS, Kim MJ, Shim SM, Kim JT, Yu SH, Koo BK, Cho HY, Choi HJ, Cho SW, Kim SW, Kim SY, Yang SO, Cho NH (2012) The prevalence and risk factors of vertebral fractures in Korea. J Bone Miner Metab 30:183–192

    Article  PubMed  Google Scholar 

  11. Waterloo S, Nguyen T, Ahmed LA, Center JR, Morseth B, Nguyen ND, Eisman JA, Sogaard AJ, Emaus N (2012) Important risk factors and attributable risk of vertebral fractures in the population-based Tromso study. BMC Musculoskelet Disord 13:163

    Article  PubMed Central  PubMed  Google Scholar 

  12. Norimatsu H, Mori S, Uesato T, Yoshikawa T, Katsuyama N (1989) Bone mineral density of the spine and proximal femur in normal and osteoporotic subjects in Japan. Bone Miner 5:213–222

    Article  CAS  PubMed  Google Scholar 

  13. Vokes TJ, Giger ML, Chinander MR, Karrison TG, Favus MJ, Dixon LB (2006) Radiographic texture analysis of densitometer-generated calcaneus images differentiates postmenopausal women with and without fractures. Osteoporos Int 17:1472–1482

    Article  CAS  PubMed  Google Scholar 

  14. Snyder BD, Piazza S, Edwards WT, Hayes WC (1993) Role of trabecular morphology in the etiology of age-related vertebral fractures. Calcif Tissue Int 53(Suppl 1):S14–S22

    Article  PubMed  Google Scholar 

  15. Gilsanz V, Loro ML, Roe TF, Sayre J, Gilsanz R, Schulz EE (1995) Vertebral size in elderly women with osteoporosis. Mechanical implications and relationship to fractures. J Clin Invest 95:2332–2337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Winter RB, Lonstein JE, Denis F (2009) Sagittal spinal alignment: the true measurement, norms, and description of correction for thoracic kyphosis. J Spinal Disord Tech 22:311–314

    Article  PubMed  Google Scholar 

  17. Lafage V, Smith JS, Bess S, Schwab FJ, Ames CP, Klineberg E, Arlet V, Hostin R, Burton DC, Shaffrey CI (2012) Sagittal spino-pelvic alignment failures following three column thoracic osteotomy for adult spinal deformity. Eur Spine J 21:698–704

    Article  PubMed Central  PubMed  Google Scholar 

  18. Lee JS, Lee HS, Shin JK, Goh TS, Son SM (2013) Prediction of sagittal balance in patients with osteoporosis using spinopelvic parameters. Eur Spine J 22:1053–1058

    Article  PubMed Central  PubMed  Google Scholar 

  19. Zhu Z, Xu L, Zhu F, Jiang L, Wang Z, Liu Z, Qian BP, Qiu Y (2014) Sagittal alignment of spine and pelvis in asymptomatic adults: norms in Chinese populations. Spine (Phila Pa 1976) 39:E1–E6

    Article  Google Scholar 

  20. Grigoryan M, Guermazi A, Roemer FW, Delmas PD, Genant HK (2003) Recognizing and reporting osteoporotic vertebral fractures. Eur Spine J 12(Suppl 2):S104–S112

    Article  PubMed Central  PubMed  Google Scholar 

  21. Boissiere L, Vital JM, Aunoble S, Fabre T, Gille O, Obeid I (2014) Lumbo-pelvic related indexes: impact on adult spinal deformity surgery. Eur Spine J. doi:10.1007/s00586-014-3402-z

    Google Scholar 

  22. Boissiere L, Bourghli A, Vital JM, Gille O, Obeid I (2013) The lumbar lordosis index: a new ratio to detect spinal malalignment with a therapeutic impact for sagittal balance correction decisions in adult scoliosis surgery. Eur Spine J 22:1339–1345

    Article  PubMed Central  PubMed  Google Scholar 

  23. Sisodia GB (2013) Methods of predicting vertebral body fractures of the lumbar spine. World J Orthop 4:241–247

    Article  PubMed Central  PubMed  Google Scholar 

  24. Bouxsein ML, Melton LR, Riggs BL, Muller J, Atkinson EJ, Oberg AL, Robb RA, Camp JJ, Rouleau PA, McCollough CH, Khosla S (2006) Age- and sex-specific differences in the factor of risk for vertebral fracture: a population-based study using QCT. J Bone Miner Res 21:1475–1482

    Article  PubMed  Google Scholar 

  25. Sanfelix-Gimeno G, Sanfelix-Genoves J, Hurtado I, Reig-Molla B, Peiro S (2013) Vertebral fracture risk factors in postmenopausal women over 50 in Valencia Spain. A population-based cross-sectional study. Bone 52:393–399

    Article  PubMed  Google Scholar 

  26. Lopes JB, Danilevicius CF, Takayama L, Caparbo VF, Menezes PR, Scazufca M, Kuroishi ME, Pereira RM (2011) Prevalence and risk factors of radiographic vertebral fracture in Brazilian community-dwelling elderly. Osteoporos Int 22:711–719

    Article  CAS  PubMed  Google Scholar 

  27. Fujiwara S, Hamaya E, Goto W, Masunari N, Furukawa K, Fukunaga M, Nakamura T, Miyauchi A, Chen P (2011) Vertebral fracture status and the World Health Organization risk factors for predicting osteoporotic fracture risk in Japan. Bone 49:520–525

    Article  PubMed  Google Scholar 

  28. Duan Y, Parfitt A, Seeman E (1999) Vertebral bone mass, size, and volumetric density in women with spinal fractures. J Bone Miner Res 14:1796–1802

    Article  CAS  PubMed  Google Scholar 

  29. Huang MH, Barrett-Connor E, Greendale GA, Kado DM (2006) Hyperkyphotic posture and risk of future osteoporotic fractures: the Rancho Bernardo study. J Bone Miner Res 21:419–423

    Article  PubMed  Google Scholar 

  30. Briggs AM, Wrigley TV, van Dieen JH, Phillips B, Lo SK, Greig AM, Bennell KL (2006) The effect of osteoporotic vertebral fracture on predicted spinal loads in vivo. Eur Spine J 15:1785–1795

    Article  PubMed  Google Scholar 

  31. Cairoli E, Eller-Vainicher C, Ulivieri FM, Zhukouskaya VV, Palmieri S, Morelli V, Beck-Peccoz P, Chiodini I (2014) Factors associated with bisphosphonate treatment failure in postmenopausal women with primary osteoporosis. Osteoporos Int 25:1401–1410

    Article  CAS  PubMed  Google Scholar 

  32. Jergas M, Breitenseher M, Gluer CC, Black D, Lang P, Grampp S, Engelke K, Genant HK (1995) Which vertebrae should be assessed using lateral dual-energy X-ray absorptiometry of the lumbar spine. Osteoporos Int 5:196–204

    Article  CAS  PubMed  Google Scholar 

  33. Sandor T, Felsenberg D, Brown E (1997) Discriminability of fracture and nonfracture cases based on the spatial distribution of spinal bone mineral. J Comput Assist Tomogr 21:498–505

    Article  CAS  PubMed  Google Scholar 

  34. Pouilles JM, Tremollieres F, Bonneu M, Ribot C (1994) Influence of early age at menopause on vertebral bone mass. J Bone Miner Res 9:311–315

    Article  CAS  PubMed  Google Scholar 

  35. Roy DK, O’Neill TW, Finn JD, Lunt M, Silman AJ, Felsenberg D, Armbrecht G, Banzer D, Benevolenskaya LI, Bhalla A, Bruges AJ, Cannata JB, Cooper C, Dequeker J, Diaz MN, Eastell R, Yershova OB, Felsch B, Gowin W, Havelka S, Hoszowski K, Ismail AA, Jajic I, Janott I, Johnell O, Kanis JA, Kragl G, Lopez VA, Lorenc R, Lyritis G, Masaryk P, Matthis C, Miazgowski T, Gennari C, Pols HA, Poor G, Raspe HH, Reid DM, Reisinger W, Scheidt-Nave C, Stepan JJ, Todd CJ, Weber K, Woolf AD, Reeve J (2003) Determinants of incident vertebral fracture in men and women: results from the European Prospective Osteoporosis Study (EPOS). Osteoporos Int 14:19–26

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank Dr. Bingjian Wang from the Huai'an First People's Hospital for his assistance with the proof-reading of our manuscript.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Tang.

Additional information

J. Dai, X. Yu and S. Huang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Yu, X., Huang, S. et al. Relationship between sagittal spinal alignment and the incidence of vertebral fracture in menopausal women with osteoporosis: a multicenter longitudinal follow-up study. Eur Spine J 24, 737–743 (2015). https://doi.org/10.1007/s00586-014-3637-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3637-8

Keywords

Navigation