Skip to main content

Advertisement

Log in

Rat model of spinal cord injury preserving dura mater integrity and allowing measurements of cerebrospinal fluid pressure and spinal cord blood flow

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purposes

Cerebrospinal fluid (CSF) pressure elevation may worsen spinal cord ischaemia after spinal cord injury (SCI). We developed a rat model to investigate relationships between CSF pressure and spinal cord blood flow (SCBF).

Methods

Male Wistar rats had SCI induced at Th10 (n = 7) or a sham operation (n = 10). SCBF was measured using laser-Doppler and CSF pressure via a sacral catheter. Dural integrity was assessed using subdural methylene-blue injection (n = 5) and myelography (n = 5).

Results

The SCI group had significantly lower SCBF (p < 0.0001) and higher CSF pressure (p < 0.0001) values compared to the sham-operated group. Sixty minutes after SCI or sham operation, CSF pressure was 8.6 ± 0.4 mmHg in the SCI group versus 5.5 ± 0.5 mmHg in the sham-operated group. No dural tears were found after SCI.

Conclusion

Our rat model allows SCBF and CSF pressure measurements after induced SCI. After SCI, CSF pressure significantly increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cadotte DW, Fehlings MG (2011) Spinal cord injury: a systematic review of current treatment options. Clin Orthop Relat Res 469:732–741. doi:10.1007/s11999-010-1674-0

    Article  PubMed  Google Scholar 

  2. McDonald JW, Sadowsky C (2002) Spinal-cord injury. Lancet 359:417–425. doi:10.1016/S0140-6736(02)07603-1

    Article  PubMed  Google Scholar 

  3. Beattie MS, Farooqui AA, Bresnahan JC (2000) Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma 17:915–925

    Article  PubMed  CAS  Google Scholar 

  4. Mautes AE, Weinzierl MR, Donovan F, Noble LJ (2000) Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys Ther 80:673–687

    PubMed  CAS  Google Scholar 

  5. Martirosyan NL, Feuerstein JS, Theodore N, Cavalcanti DD, Spetzler RF, Preul MC (2011) Blood supply and vascular reactivity of the spinal cord under normal and pathological conditions. J Neurosurg Spine 15:238–251. doi:10.3171/2011.4.SPINE10543

    Article  PubMed  Google Scholar 

  6. Fedorow CA, Moon MC, Mutch WA, Grocott HP (2010) Lumbar cerebrospinal fluid drainage for thoracoabdominal aortic surgery: rationale and practical considerations for management. Anesth Analg 111:46–58. doi:10.1213/ANE.0b013e3181ddddd6

    PubMed  Google Scholar 

  7. Estrera AL, Sheinbaum R, Miller CC, Azizzadeh A, Walkes JC, Lee TY, Kaiser L, Safi HJ (2009) Cerebrospinal fluid drainage during thoracic aortic repair: safety and current management. Ann Thorac Surg 88:9–15. doi:10.1016/j.athoracsur.2009.03.039(discussion 15)

    Article  PubMed  Google Scholar 

  8. Coselli JS, Lemaire SA, Koksoy C, Schmittling ZC, Curling PE (2002) Cerebrospinal fluid drainage reduces paraplegia after thoracoabdominal aortic aneurysm repair: results of a randomized clinical trial. J Vasc Surg 35:631–639 pii:S0741521402791477

    Article  PubMed  Google Scholar 

  9. Griepp RB, Griepp EB (2007) Spinal cord perfusion and protection during descending thoracic and thoracoabdominal aortic surgery: the collateral network concept. Ann Thorac Surg 83:S865–S869. doi:10.1016/j.athoracsur.2006.10.092 (discussion S890–S892)

    Article  PubMed  Google Scholar 

  10. Kwon BK, Curt A, Belanger LM, Bernardo A, Chan D, Markez JA, Gorelik S, Slobogean GP, Umedaly H, Giffin M, Nikolakis MA, Street J, Boyd MC, Paquette S, Fisher CG, Dvorak MF (2009) Intrathecal pressure monitoring and cerebrospinal fluid drainage in acute spinal cord injury: a prospective randomized trial. J Neurosurg Spine 10:181–193. doi:10.3171/2008.10.SPINE08217

    Article  PubMed  Google Scholar 

  11. Keenen TL, Antony J, Benson DR (1990) Dural tears associated with lumbar burst fractures. J Orthop Trauma 4:243–245

    Article  PubMed  CAS  Google Scholar 

  12. Hamamoto Y, Ogata T, Morino T, Hino M, Yamamoto H (2007) Real-time direct measurement of spinal cord blood flow at the site of compression: relationship between blood flow recovery and motor deficiency in spinal cord injury. Spine 32:1955–1962. doi:10.1097/BRS.0b013e3181316310

    Article  PubMed  Google Scholar 

  13. Tang Y, Shen HY, Huang L, Wu YF, Yang W, Ma YC, Yang R, Li J, Wang P (2008) Effect of intrathecal papaverine on blood flow and secondary injury in injured cord. Spinal Cord 46:716–721. doi:10.1038/sc.2008.30

    Article  PubMed  CAS  Google Scholar 

  14. Guha A, Tator CH, Smith CR, Piper I (1989) Improvement in post-traumatic spinal cord blood flow with a combination of a calcium channel blocker and a vasopressor. J Trauma 29:1440–1447

    Article  PubMed  CAS  Google Scholar 

  15. Westergren H, Farooque M, Olsson Y, Holtz A (2001) Spinal cord blood flow changes following systemic hypothermia and spinal cord compression injury: an experimental study in the rat using Laser-Doppler flowmetry. Spinal Cord 39:74–84

    Article  PubMed  CAS  Google Scholar 

  16. Kato S, Kawahara N, Tomita K, Murakami H, Demura S, Fujimaki Y (2008) Effects on spinal cord blood flow and neurologic function secondary to interruption of bilateral segmental arteries which supply the artery of Adamkiewicz: an experimental study using a dog model. Spine 33:1533–1541. doi:10.1097/BRS.0b013e318178e5af (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  17. Bower TC, Murray MJ, Gloviczki P, Yaksh TL, Hollier LH, Pairolero PC (1989) Effects of thoracic aortic occlusion and cerebrospinal fluid drainage on regional spinal cord blood flow in dogs: correlation with neurologic outcome. J Vasc Surg 9:135–144 pii:0741-5214(89)90228-0

    PubMed  CAS  Google Scholar 

  18. Dasmahapatra HK, Coles JG, Wilson GJ, Sherret H, Adler S, Williams WG, Trusler GA (1988) Relationship between cerebrospinal fluid dynamics and reversible spinal cord ischemia during experimental thoracic aortic occlusion. J Thorac Cardiovasc Surg 95:920–923

    PubMed  CAS  Google Scholar 

  19. Young W (2002) Spinal cord contusion models. Prog Brain Res 137:231–255

    Article  PubMed  Google Scholar 

  20. Horn EM, Theodore N, Assina R, Spetzler RF, Sonntag VK, Preul MC (2008) The effects of intrathecal hypotension on tissue perfusion and pathophysiological outcome after acute spinal cord injury. Neurosurg Focus 25:E12. doi:10.3171/FOC.2008.25.11.E12

    Article  PubMed  Google Scholar 

  21. Shen XF, Zhao Y, Zhang YK, Jia LY, Ju G (2009) A modified ferric tannate method for visualizing a blood vessel and its usage in the study of spinal cord injury. Spinal Cord. doi:10.1038/sc.2009.30

    PubMed  Google Scholar 

  22. Soubeyrand M, Laemmel E, Dubory A, Vicaut E, Court C, Duranteau J (2012) Real-time and spatial quantification using contrast-enhanced ultrasonography of spinal cord perfusion during experimental spinal cord injury. Spine 37:E1376–E1382. doi:10.1097/BRS.0b013e318269790f (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  23. Koyanagi I, Tator CH, Lea PJ (1993) Three-dimensional analysis of the vascular system in the rat spinal cord with scanning electron microscopy of vascular corrosion casts. Part 2: Acute spinal cord injury. Neurosurgery 33:285–291

    Article  PubMed  CAS  Google Scholar 

  24. Dolan EJ, Tator CH (1980) The treatment of hypotension due to acute experimental spinal cord compression injury. Surg Neurol 13:380–384

    PubMed  CAS  Google Scholar 

  25. Anthes DL, Theriault E, Tator CH (1996) Ultrastructural evidence for arteriolar vasospasm after spinal cord trauma. Neurosurgery 39:804–814

    Article  PubMed  CAS  Google Scholar 

  26. Hickey R, Albin MS, Bunegin L, Gelineau J (1986) Autoregulation of spinal cord blood flow: is the cord a microcosm of the brain? Stroke 17:1183–1189

    Article  PubMed  CAS  Google Scholar 

  27. Menetrey J, Peter R (1998) Acute compartment syndrome in the post-traumatic leg. Rev Chir Orthop Reparatrice Appar Mot 84:272–280 pii:MDOI-RCO-05-1998-84-3-0035-1040-101019-ART68

    PubMed  CAS  Google Scholar 

  28. Gharagozloo F, Neville RF Jr, Cox JL (1998) Spinal cord protection during surgical procedures on the descending thoracic and thoracoabdominal aorta: a critical overview. Semin Thorac Cardiovasc Surg 10:73–86 pii:S1043067998000112

    PubMed  CAS  Google Scholar 

  29. D’Ambra MN, Dewhirst W, Jacobs M, Bergus B, Borges L, Hilgenberg A (1988) Cross-clamping the thoracic aorta. Effect on intracranial pressure. Circulation 78:198–202

    Google Scholar 

  30. Casha S, Christie S (2011) A systematic review of intensive cardiopulmonary management after spinal cord injury. J Neurotrauma 28:1479–1495. doi:10.1089/neu.2009.1156

    Article  PubMed  Google Scholar 

  31. Smith JS, Anderson R, Pham T, Bhatia N, Steward O, Gupta R (2010) Role of early surgical decompression of the intradural space after cervical spinal cord injury in an animal model. J Bone Joint Surg Am 92:1206–1214. doi:10.2106/JBJS.I.00740

    Article  PubMed  Google Scholar 

  32. Rivlin AS, Tator CH (1978) Regional spinal cord blood flow in rats after severe cord trauma. J Neurosurg 49:844–853. doi:10.3171/jns.1978.49.6.0844

    Article  PubMed  CAS  Google Scholar 

  33. Runza M, Pietrabissa R, Mantero S, Albani A, Quaglini V, Contro R (1999) Lumbar dura mater biomechanics: experimental characterization and scanning electron microscopy observations. Anesth Analg 88:1317–1321

    PubMed  CAS  Google Scholar 

  34. Persson C, Evans S, Marsh R, Summers JL, Hall RM (2010) Poisson’s ratio and strain rate dependency of the constitutive behavior of spinal dura mater. Ann Biomed Eng 38:975–983. doi:10.1007/s10439-010-9924-6

    Article  PubMed  Google Scholar 

  35. Maikos JT, Elias RA, Shreiber DI (2008) Mechanical properties of dura mater from the rat brain and spinal cord. J Neurotrauma 25:38–51. doi:10.1089/neu.2007.0348

    Article  PubMed  Google Scholar 

  36. Patin DJ, Eckstein EC, Harum K, Pallares VS (1993) Anatomic and biomechanical properties of human lumbar dura mater. Anesth Analg 76:535–540

    Article  PubMed  CAS  Google Scholar 

  37. Kumar A, Maartens NF, Kaye AH (2003) Evaluation of the use of BioGlue in neurosurgical procedures. J Clin Neurosci 10:661–664 pii:S0967586803001632

    Article  PubMed  CAS  Google Scholar 

  38. Jones CF, Kroeker SG, Cripton PA, Hall RM (2008) The effect of cerebrospinal fluid on the biomechanics of spinal cord: an ex vivo bovine model using bovine and physical surrogate spinal cord. Spine 33:E580–E588. doi:10.1097/BRS.0b013e31817ecc57 (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  39. Jones CF, Kwon BK, Cripton PA (2012) Mechanical indicators of injury severity are decreased with increased thecal sac dimension in a bench-top model of contusion type spinal cord injury. J Biomech 45:1003–1010. doi:10.1016/j.jbiomech.2012.01.025

    Article  PubMed  Google Scholar 

  40. Barth KN, Onesti ST, Krauss WE, Solomon RA (1992) A simple and reliable technique to monitor intracranial pressure in the rat: technical note. Neurosurgery 30:138–140

    Article  PubMed  CAS  Google Scholar 

  41. Budgell BS, Bolton PS (2007) Cerebrospinal fluid pressure in the anesthetized rat. J Manipulative Physiol Ther 30:351–356. doi:10.1016/j.jmpt.2007.04.002

    Article  PubMed  Google Scholar 

  42. Carlson GD, Oliff HS, Gorden C, Smith J, Anderson PA (2003) Cerebral spinal fluid pressure: effects of body position and lumbar subarachnoid drainage in a canine model. Spine 28:119–122. doi:10.1097/01.BRS.0000041578.08645.3B (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  43. Klarica M, Rados M, Draganic P, Erceg G, Oreskovic D, Marakovic J, Bulat M (2006) Effect of head position on cerebrospinal fluid pressure in cats: comparison with artificial model. Croat Med J 47:233–238

    PubMed  Google Scholar 

  44. Chodobski A, Szmydynger-Chodobska J, Epstein MH, Johanson CE (1995) The role of angiotensin II in the regulation of blood flow to choroid plexuses and cerebrospinal fluid formation in the rat. J Cereb Blood Flow Metab 15:143–151. doi:10.1038/jcbfm.1995.16

    Article  PubMed  CAS  Google Scholar 

  45. Shapiro K, Shulman K, Marmarou A, Poll W (1977) Tissue pressure gradients in spinal cord injury. Surg Neurol 7:275–279

    PubMed  CAS  Google Scholar 

  46. Jones CF, Lee JH, Kwon BK, Cripton PA (2012) Development of a large-animal model to measure dynamic cerebrospinal fluid pressure during spinal cord injury: laboratory investigation. J Neurosurg Spine 16:624–635. doi:10.3171/2012.3.SPINE11970

    Article  PubMed  Google Scholar 

  47. Jones CF, Newell RS, Lee JH, Cripton PA, Kwon BK (2012) The pressure distribution of cerebrospinal fluid responds to residual compression and decompression in an animal model of acute spinal cord injury. Spine 37:E1422–E1431. doi:10.1097/BRS.0b013e31826ba7cd (Phila Pa 1976)

    Article  PubMed  Google Scholar 

  48. Kusaka G, Calvert JW, Smelley C, Nanda A, Zhang JH (2004) New lumbar method for monitoring cerebrospinal fluid pressure in rats. J Neurosci Methods 135:121–127. doi:10.1016/j.jneumeth.2003.12.013

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Soubeyrand.

Additional information

E. Vicaut and J. Duranteau have similarly contributed to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soubeyrand, M., Laemmel, E., Court, C. et al. Rat model of spinal cord injury preserving dura mater integrity and allowing measurements of cerebrospinal fluid pressure and spinal cord blood flow. Eur Spine J 22, 1810–1819 (2013). https://doi.org/10.1007/s00586-013-2744-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-013-2744-2

Keywords

Navigation