Skip to main content
Log in

Intraoperative determination of the load–displacement behavior of scoliotic spinal motion segments: preliminary clinical results

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Introduction

Spinal fusion is a widely and successfully performed strategy for the treatment of spinal deformities and degenerative diseases. The general approach has been to stabilize the spine with implants so that a solid bony fusion between the vertebrae can develop. However, new implant designs have emerged that aim at preservation or restoration of the motion of the spinal segment. In addition to static, load sharing principles, these designs also require a profound knowledge of kinematic and dynamic properties to properly characterise the in vivo performance of the implants.

Methods

To address this, an apparatus was developed that enables the intraoperative determination of the load–displacement behavior of spinal motion segments. The apparatus consists of a sensor-equipped distractor to measure the applied force between the transverse processes, and an optoelectronic camera to track the motion of vertebrae and the distractor. In this intraoperative trial, measurements from two patients with adolescent idiopathic scoliosis with right thoracic curves were made at four motion segments each.

Results

At a lateral bending moment of 5 N m, the mean flexibility of all eight motion segments was 0.18 ± 0.08°/N m on the convex side and 0.24 ± 0.11°/N m on the concave side.

Discussion

The results agree with published data obtained from cadaver studies with and without axial preload. Intraoperatively acquired data with this method may serve as an input for mathematical models and contribute to the development of new implants and treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brown MD, Holmes DC, Heiner AD, Wehman KF (2002) Intraoperative measurement of lumbar spine motion segment stiffness. Spine (Phila Pa 1976) 27(9):954–958

    Article  Google Scholar 

  2. Busscher I, van Dieën JH, Kingma I, van der Veen AJ, Verkerke GJ, Veldhuizen AG (2009) Biomechanical characteristics of different regions of the human spine: an in vitro study on multilevel spinal segments. Spine (Phila Pa 1976) 34(26):2858–2864

    Article  Google Scholar 

  3. Chang LY, Pollard NS (2007) Robust estimation of dominant axis of rotation. J Biomech 40(12):2707–2715

    Article  PubMed  Google Scholar 

  4. Duance VC, Crean JK, Sims TJ, Avery N, Smith S, Menage J, Eisenstein SM, Roberts S (1998) Changes in collagen cross-linking in degenerative disc disease and scoliosis. Spine (Phila Pa 1976) 23(23):2545–2551

    Article  CAS  Google Scholar 

  5. Ebara S, Harada T, Hosono N, Inoue M, Tanaka M, Morimoto Y, Ono K (1992) Intraoperative measurement of lumbar spinal instability. Spine (Phila Pa 1976) 17(3 Suppl):S44–S50

    Article  CAS  Google Scholar 

  6. Eguizabal J, Tufaga M, Scheer JK, Ames C, Lotz JC, Buckley JM (2010) Pure moment testing for spinal biomechanics applications: fixed versus sliding ring cable-driven test designs. J Biomech 43(7):1422–1425

    Article  PubMed  Google Scholar 

  7. Gédet P, Thistlethwaite PA, Ferguson SJ (2007) Minimizing errors during in vitro testing of multisegmental spine specimens: considerations for component selection and kinematic measurement. J Biomech 40(8):1881–1885

    Article  PubMed  Google Scholar 

  8. Ghiselli G, Wang JC, Bhatia NN, Hsu WK, Dawson EG (2004) Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am 86-A(7):1497–1503

    PubMed  Google Scholar 

  9. Ghista DN, Viviani GR, Subbaraj K, Lozada PJ, Srinivasan TM, Barnes G (1988) Biomechanical basis of optimal scoliosis surgical correction. J Biomech 21(2):77–88

    Article  PubMed  CAS  Google Scholar 

  10. Goffin J, Geusens E, Vantomme N, Quintens E, Waerzeggers Y, Depreitere B, Calenbergh FV, van Loon J (2004) Long-term follow-up after interbody fusion of the cervical spine. J Spinal Disord Tech 17(2):79–85

    Article  PubMed  Google Scholar 

  11. Guan Y, Yoganandan N, Moore J, Pintar FA, Zhang J, Maiman DJ, Laud P (2007) Moment–rotation responses of the human lumbosacral spinal column. J Biomech 40(9):1975–1980

    Article  PubMed  Google Scholar 

  12. Hasegewa K, Kitahara K, Hara T, T K, Shimoda H (2009) Biomechanical evaluation of segmental instability in degenerative lumbar spondylolisthesis. Eur Spine J 18(4):465–470

    Article  PubMed  Google Scholar 

  13. Heuer F, Schmidt H, Claes L, Wilke HJ (2007) Stepwise reduction of functional spinal structures increase vertebral translation and intradiscal pressure. J Biomech 40(4):795–803

    Article  PubMed  Google Scholar 

  14. Heuer F, Schmidt H, Klezl Z, Claes L, Wilke HJ (2007) Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J Biomech 40(2):271–280

    Article  PubMed  Google Scholar 

  15. Krenn MH, Ambrosetti-Giudici S, Pfenniger A, Burger J, Piotrowski WP (2008) Minimally invasive intraoperative stiffness measurement of lumbar spinal motion segments. Neurosurgery 63(4 Suppl 2):309–313 (discussion 313–4)

    Article  PubMed  Google Scholar 

  16. Lafon Y, Lafage V, Steib JP, Dubousset J, Skalli W (2010) In vivo distribution of spinal intervertebral stiffness based on clinical flexibility tests. Spine (Phila Pa 1976) 35(2):186–193

    Article  Google Scholar 

  17. Oxland TR, Lin RM, Panjabi MM (1992) Three-dimensional mechanical properties of the thoracolumbar junction. J Orthop Res 10(4):573–580

    Article  PubMed  CAS  Google Scholar 

  18. Panjabi MM, Brand RA, White AA (1976) Mechanical properties of the human thoracic spine as shown by three-dimensional load–displacement curves. J Bone Joint Surg Am 58(5):642–652

    PubMed  CAS  Google Scholar 

  19. Panjabi MM, Brand RA, White AA (1976) Three-dimensional flexibility and stiffness properties of the human thoracic spine. J Biomech 9(4):185–192

    Article  PubMed  CAS  Google Scholar 

  20. Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ (1994) Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load–displacement curves. J Bone Joint Surg Am 76(3):413–424

    PubMed  CAS  Google Scholar 

  21. Petit Y, Aubin CE, Labelle H (2004) Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine. Med Biol Eng Comput 42(1):55–60

    Article  PubMed  CAS  Google Scholar 

  22. Reutlinger C, Gédet P, Büchler P, Kowal J, Rudolph T, Burger J, Scheffler K, Hasler C (2011) Combining 3D tracking and surgical instrumentation to determine the stiffness of spinal motion segments: a validation study. Med Eng Phys 33(3):340–346

    Article  PubMed  CAS  Google Scholar 

  23. Sran MM, Khan KM, Zhu Q, Oxland TR (2005) Posteroanterior stiffness predicts sagittal plane midthoracic range of motion and three-dimensional flexibility in cadaveric spine segments. Clin Biomech (Bristol, Avon) 20(8):806–812

    Article  Google Scholar 

  24. Tawackoli W, Marco R, Liebschner MAK (2004) The effect of compressive axial preload on the flexibility of the thoracolumbar spine. Spine (Phila Pa 1976) 29(9):988–993

    Article  Google Scholar 

  25. Wilke HJ, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3(2):91–97

    Article  PubMed  CAS  Google Scholar 

  26. Yamamoto I, Panjabi MM, Crisco T, Oxland T (1989) Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine (Phila Pa 1976) 14(11):1256–1260

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by NCCR Co-Me of the Swiss National Science Foundation.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Reutlinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reutlinger, C., Hasler, C., Scheffler, K. et al. Intraoperative determination of the load–displacement behavior of scoliotic spinal motion segments: preliminary clinical results. Eur Spine J 21 (Suppl 6), 860–867 (2012). https://doi.org/10.1007/s00586-012-2164-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-012-2164-8

Keywords

Navigation