Skip to main content

Advertisement

Log in

In vivo preclinical evaluation of the influence of osteoporosis on the anchorage of different pedicle screw designs

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

We investigate the anchorage of pedicle screws with different surface treatments in osteoporotic bone. Eight ewes were divided into two groups of four animals each: four sheep underwent bilateral ovariectomy (OVX Group), whereas the operation was simulated in the remaining group (SHAM Group). Eighteen months after the first operation, the Dynesys® System was fitted to the sheep using pedicle screws with three different surface treatments: untreated, rough blasted (uncoated) and bioactive coated (bioactive). Uncoated screws showed a significantly higher bone ingrowth value compared with the untreated screws in the OVX group (9.3%, p < 0.005) and a significantly lower bone ingrowth value in the SHAM group (−11.0%, p < 0.05). Furthermore, the bioactive pedicle screws had a significant lower bone ingrowth value than the untreated screws in the SHAM group (−12.1%, p < 0.05). These results suggest that both tested surface treatments of pedicular screws may provide an advantage in terms of bone quality and osseointegration, when implanted in osteoporotic vertebrae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boden SD (1998) Bone repair and enhancement of clinical trial design: spine applications. Clin Orthop 355:336–346. doi:10.1097/00003086-199810001-00033

    Google Scholar 

  2. Stoll TM et al (2002) The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J 11:S170–S178. doi:10.1007/s00586-002-0438-2

    PubMed  Google Scholar 

  3. Mulholland RC (2008) The myth of lumbar instability: the importance of abnormal loading as a cause of low back pain. Eur Spine J 17(5):619–625. doi:10.1007/s00586-008-0612-2

    Article  PubMed  CAS  Google Scholar 

  4. Beastall J et al (2007) The Dynesys lumbar spinal stabilization system: a preliminary report on positional magnetic resonance imaging findings. Spine 32:685–690. doi:10.1097/01.brs.0000257578.44134.fb

    Article  PubMed  Google Scholar 

  5. Schlegel JD et al (1996) Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusions. Spine 21:970–981. doi:10.1097/00007632-199604150-00013

    Article  PubMed  CAS  Google Scholar 

  6. Galbusera F et al (2008) Design concepts in lumbar total disc arthroplasty. Eur Spine J 17:1635–1650. doi:10.1007/s00586-008-0811-x

    Article  PubMed  Google Scholar 

  7. Mulholland RC, Sengupta DK (2002) Rationale, principles and experimental evaluation of the concept of soft stabilization. Eur Spine J 11:S198–S205. doi:10.1007/s00586-002-0422-x

    PubMed  Google Scholar 

  8. Frankel BM et al (2007) Segmental polymethylmethacrylate augmented pedicle screw fixation in patients with bone softening caused by osteoporosis and metastatic tumor involvement: a clinical evaluation. Neurosurgery 61:531–537. doi:10.1227/01.NEU.0000290899.15567.68 discussion 537–538

    Article  PubMed  Google Scholar 

  9. Halvorson TL et al (1994) Effects of bone mineral density on pedicle screw fixation. Spine 19:2415–2420. doi:10.1097/00007632-199411000-00008

    Article  PubMed  CAS  Google Scholar 

  10. Upasani VV et al (2009) Pedicle screw surface coatings improve fixation in nonfusion spinal constructs. Spine (Phila Pa 1976) 34(4):335–343. doi:10.1097/BRS.0b013e318194878d

    Article  Google Scholar 

  11. Carmouche JJ et al (2005) Effects of pilot hole preparation technique on pedicle screw fixation in different regions of the osteoporotic thoracic and lumbar spine. J Neurosurg Spine 3:364–370. doi:10.3171/spi.2005.3.5.0364

    Article  PubMed  Google Scholar 

  12. Cook SD et al (2001) Lumbosacral fixation using expandable pedicle screws. an alternative in reoperation and osteoporosis. Spine J 1:109–114. doi:10.1016/S1529-9430(01)00020-1

    Article  PubMed  CAS  Google Scholar 

  13. Nicoli Aldini N et al (2002) Pedicular fixation in the osteoporotic spine: a pilot in vivo study on long-term ovariectomized sheep. J Orthop Res 20:1217–1224. doi:10.1016/S0736-0266(02)00069-4

    Article  PubMed  Google Scholar 

  14. Fransen P (2007) Increasing pedicle screw anchoring in the osteoporotic spine by cement injection through the implant. Technical note and report of three cases. J Neurosurg Spine 7:366–369. doi:10.3171/SPI-07/09/366

    Article  PubMed  Google Scholar 

  15. Fini M et al (2003) Biological assessment of the bone–screw interface after insertion of uncoated and hydroxyapatite-coated pedicular screws in osteopenic sheep. J Biomed Mater Res 66:176–183. doi:10.1002/jbm.a.10605

    Article  CAS  Google Scholar 

  16. Fini M et al (2003) Biomechanical and histomorphometric investigations on two morphologically differing titanium surfaces with and without fluorohydroxyapatite coating: an experimental study in sheep tibiae. Biomaterials 24:3182–3192. doi:10.1016/S0142-9612(03)00164-9

    Google Scholar 

  17. Giavaresi G et al (2003) Mechanical and histomorphometric evaluations of titanium implants with different surface treatments inserted in sheep cortical bone. Biomaterials 24:1583–1594. doi:10.1016/S0142-9612(02)00548-3

    Article  PubMed  CAS  Google Scholar 

  18. Giavaresi G et al (2004) Different diagnostic techniques for the assessment of cortical bone on osteoporotic animals. Biomed Pharmacother 58:494–499. doi:10.1016/j.biopha.2004.08.017

    Article  PubMed  CAS  Google Scholar 

  19. Nicoli Aldini N et al (2004) Osseointegration of bioactive glass-coated and uncoated zirconia in osteopenic bone: an in vivo experimental study. J Biomed Mater Res 68A(2):264–272. doi:10.1002/jbm.a.20057

    Article  Google Scholar 

  20. Schwarzenbach O et al (2005) Posterior dynamic stabilization systems: DYNESYS. Orthop Clin N Am 36:363–372. doi:10.1016/j.ocl.2005.03.001

    Article  Google Scholar 

  21. Kim HM et al (2000) Formation of bioactive functionally graded structure on Ti-6Al-4 V alloy by chemical surface treatment. J Mater Sci Mater Med 11:555–559. doi:10.1023/A:1008924102096

    Article  PubMed  CAS  Google Scholar 

  22. Spriano S et al (2005) Characterisation of surface modified Ti-6Al-7Nb alloy. J Mater Sci Mater Med 16:301–312. doi:10.1007/s10856-005-0628-7

    Article  PubMed  CAS  Google Scholar 

  23. Parfitt AM et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 2:595–610. doi:10.1002/jbmr.5650020617

    Article  PubMed  CAS  Google Scholar 

  24. Spriano S et al (2005) Surface properties and cell response of low metal ion release Ti-6Al-7Nb alloy after multi-step chemical and thermal treatments. Biomaterials 26:1219–1229. doi:10.1016/j.biomaterials.2004.04

    Article  PubMed  CAS  Google Scholar 

  25. Chappard D et al (1999) The early remodeling phases around titanium implants: a histomorphometric assessment of bone quality in a 3- and 6-month study in sheep. Int J Oral Maxillofac Implants 14:189–196

    PubMed  CAS  Google Scholar 

  26. Spriano S et al (2005) New chemical treatment for bioactive titanium alloy with high corrosion resistance. J Mater Sci Mater Med 16:203–211. doi:10.1007/s10856-005-6681-4

    Article  PubMed  CAS  Google Scholar 

  27. Iannuzzi A et al (2010) In vivo deformation, surface damage, and biostability of retrieved Dynesys systems. Spine 35:E1310–E1316. doi:10.1097/BRS.0b013e3181d6f84f

    Article  Google Scholar 

  28. Ko CC et al (2010) Screw loosening in the Dynesys stabilization system: radiographic evidence and effect on outcomes. Neurosurg Focus 28:E10. doi:10.3171/2010.3.FOCUS1052

    Article  PubMed  Google Scholar 

  29. Liu CL et al (2010) Influence of Dynesys system screw profile on adjacent segment and screw. J Spinal Disord Tech 23:410–417. doi:10.1097/BSD.0b013e3181b63d89

    Article  PubMed  Google Scholar 

  30. Meyer CM et al (2008) Discrepancies in T-score readings between patients with asymmetrical gait. J Am Geriatr Soc 56:758. doi:10.1111/j.1532-5415.2008.01642.x

    Article  PubMed  Google Scholar 

  31. Fini M et al (2000) The ovariectomized sheep as a model for testing biomaterials and prosthetic devices in osteopenic bone: a preliminary study on iliac crest biopsies. Int J Artif Organs 23:275–281

    PubMed  CAS  Google Scholar 

  32. Giavaresi G et al (2001) The ovariectomized ewe model in the evaluation of biomaterials for prosthetic devices in spinal fixation. Int J Artif Organs 24:814–820

    PubMed  CAS  Google Scholar 

  33. Turner et al (1993) Static and dynamic histomorphometric data in 9-to 11-years old ewes. Poster Session Abstracts-ACVS: 413

  34. Rocca M et al (2002) Osteointegration of hydroxypapatite-coated and uncoated titanium screws in long-term ovariectomized sheep. Biomaterials 23:1017–1023. doi:10.1016/S0142-9612(01)00213-7

    Article  PubMed  CAS  Google Scholar 

  35. Wilke HJ et al (1997) Are sheep spines a valid biomechanical model for human spines? Spine 2:2365–2374

    Article  Google Scholar 

Download references

Acknowledgments

The Authors wish to thank Mr. Keith Smith for his assistance in language supervision.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Giavaresi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giavaresi, G., Fini, M., Giardino, R. et al. In vivo preclinical evaluation of the influence of osteoporosis on the anchorage of different pedicle screw designs. Eur Spine J 20, 1289–1296 (2011). https://doi.org/10.1007/s00586-011-1831-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-011-1831-5

Keywords

Navigation