Skip to main content
Log in

Development of an intact intervertebral disc organ culture system in which degeneration can be induced as a prelude to studying repair potential

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The present work describes a novel bovine disc organ culture system with long-term maintenance of cell viability, in which degenerative changes can be induced as a prelude to studying repair. Discs were isolated with three different techniques: without endplates (NEP), with bony endplates (BEP) and with intact cartilage endplates (CEP). Swelling, deformation, and cell viability were evaluated in unloaded cultures. Degeneration was induced by a single trypsin injection into the center of the disc and the effect on cell viability and matrix degradation was followed. Trypsin-treated discs were exposed to TGFβ to evaluate the potential to study repair in this system. NEP isolated discs showed >75% maintained cell viability for up to 10 days but were severely deformed, BEP discs on the other hand maintained morphology but failed to retain cell viability having only 27% viable cells after 10 days. In CEP discs, both cell viability and morphology were maintained for at least 4 weeks where >75% of the cells were still viable. To mimic proteoglycan loss during disc degeneration, a single trypsin injection was administered to the center of the disc. This resulted in 60% loss of aggrecan, after 7 days, without affecting cell viability. When TGFβ was injected to validate that the system can be used to study a repair response following injection of a bio-active substance, proteoglycan synthesis nearly doubled compared to baseline synthesis. Trypsin-treated bovine CEP discs therefore provide a model system for studying repair of the degenerate disc, as morphology, cell viability and responsiveness to bio-active substances were maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barbosa I, Garcia S, Barbier-Chassefiere V, Caruelle JP, Martelly I, Papy-Garcia D (2003) Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. Glycobiology 13:647–653

    Article  PubMed  CAS  Google Scholar 

  2. Bertram H, Steck E, Zimmerman G, Chen B, Carstens C, Nerlich A, Richter W (2006) Accelerated intervertebral disc degeneration in scoliosis versus physiological ageing develops against a background of enhanced anabolic gene expression. Biochem Biophys Res Commun 342:963–972

    Article  PubMed  CAS  Google Scholar 

  3. Buckwalter JA (1995) Aging and degeneration of the human intervertebral disc. Spine 20:1307–1314

    PubMed  CAS  Google Scholar 

  4. Camper L, Heinegård D, Lundgren-Åkerlund E (1997) Integrin alpha2beta1 is a receptor for the cartilage matrix protein chondroadherin. J Cell Biol 138:1159–1167

    Article  PubMed  CAS  Google Scholar 

  5. DiFabio JL, Pearce RH, Caterson B, Hughes H (1987) The heterogeneity of the non-aggregating proteoglycans of the human intervertebral disc. Biochem J 244:27–33

    PubMed  CAS  Google Scholar 

  6. Diwan AD, Parvataneni HK, Khan SN, Sandhu HS, Girardi FP, Cammisa FP Jr (2000) Current concepts in intervertebral disc restoration. Orthop Clin North Am 31:453–464

    Article  PubMed  CAS  Google Scholar 

  7. Ellman MB, An HS, Muddasani P, Im HJ (2008) Biological impact of the fibroblast growth factor family on articular cartilage and intervertebral disc homeostasis. Gene 420:82–89

    Article  PubMed  CAS  Google Scholar 

  8. Gantenbein B, Grunhagen T, Lee CR, van Donkelaar CC, Alini M, Ito K (2006) An in vitro organ culturing system for intervertebral disc explants with vertebral endplates: a feasibility study with ovine caudal discs. Spine 31:2665–2673

    Article  PubMed  Google Scholar 

  9. Gooch KJ, Blunk T, Courter DL, Sieminski AL, Vunjak-Novakovic G, Freed LE (2002) Bone morphogenetic proteins-2, -12, and -13 modulate in vitro development of engineered cartilage. Tissue Eng 8:591–601

    Article  PubMed  CAS  Google Scholar 

  10. Guyer RD, Foley KT, Phillips FM, Ball PA (2003) Minimally invasive fusion: summary statement. Spine 28:S44

    PubMed  Google Scholar 

  11. Haglund L, Ouellet J, Roughley P (2009) Variation in chondroadherin abundance and fragmentation in the human scoliotic disc. Spine 34:1513–1518

    Google Scholar 

  12. Hardingham TE, Bayliss MT, Rayan V, Noble DP (1992) Effects of growth factors and cytokines on proteoglycan turnover in articular cartilage. Br J Rheumatol 31(Suppl 1):1–6

    Google Scholar 

  13. Heathfield SK, Le Maitre CL, Hoyland JA (2008) Caveolin-1 expression and stress-induced premature senescence in human intervertebral disc degeneration. Arthritis Res Ther 10:R87

    Article  PubMed  Google Scholar 

  14. Horner HA, Urban JP (2001) Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine 26:2543–2549

    Article  PubMed  CAS  Google Scholar 

  15. Humzah MD, Soames RW (1988) Human intervertebral disc: structure and function. Anat Rec 220:337–356

    Article  PubMed  CAS  Google Scholar 

  16. Hunter CJ, Matyas JR, Duncan NA (2003) The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering. Tissue Eng 9:667–677

    Article  PubMed  CAS  Google Scholar 

  17. Hunter CJ, Matyas JR, Duncan NA (2004) The functional significance of cell clusters in the notochordal nucleus pulposus: survival and signaling in the canine intervertebral disc. Spine 29:1099–1104

    Google Scholar 

  18. Hutton WC, Toribatake Y, Elmer WA, Ganey TM, Tomita K, Whitesides TE (1998) The effect of compressive force applied to the intervertebral disc in vivo. A study of proteoglycans and collagen. Spine 23:2524–2537

    Article  PubMed  CAS  Google Scholar 

  19. Iatridis JC, Mente PL, Stokes IA, Aronsson DD, Alini M (1999) Compression-induced changes in intervertebral disc properties in a rat tail model. Spine 24:996–1002

    Article  PubMed  CAS  Google Scholar 

  20. Imai Y, Miyamoto K, An HS, Thonar EJ, Andersson GB, Masuda K (2007) Recombinant human osteogenic protein-1 upregulates proteoglycan metabolism of human anulus fibrosus and nucleus pulposus cells. Spine 32:1303–1309

    Article  PubMed  Google Scholar 

  21. Jahnke MR, McDevitt CA (1988) Proteoglycans of the human intervertebral disc. Electrophoretic heterogeneity of the aggregating proteoglycans of the nucleus pulposus. Biochem J 251:347–356

    PubMed  CAS  Google Scholar 

  22. Junger S, Gantenbein-Ritter B, Lezuo P, Alini M, Ferguson SJ, Ito K (2009) Effect of limited nutrition on in situ intervertebral disc cells under simulated-physiological loading. Spine 34:1264–1271

    Article  PubMed  Google Scholar 

  23. Kletsas D (2009) Senescent cells in the intervertebral disc: numbers and mechanisms. Spine J 9:677–678

    Article  PubMed  Google Scholar 

  24. Korecki CL, MacLean JJ, Iatridis JC (2007) Characterization of an in vitro intervertebral disc organ culture system. Eur Spine J 16:1029–1037

    Article  PubMed  Google Scholar 

  25. Larsson T, Sommarin Y, Paulsson M, Antonsson P, Hedbom E, Wendel M, Heinegård D (1991) Cartilage matrix proteins. A basic 36-kDa protein with a restricted distribution to cartilage and bone. J Biol Chem 266:20428–20433

    PubMed  CAS  Google Scholar 

  26. Le Maitre CL, Freemont AJ, Hoyland JA (2007) Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res Ther 9:R45

    Article  PubMed  Google Scholar 

  27. Lee CR, Iatridis JC, Poveda L, Alini M (2006) In vitro organ culture of the bovine intervertebral disc: effects of vertebral endplate and potential for mechanobiology studies. Spine 31:515–522

    Article  PubMed  Google Scholar 

  28. Lotz JC, Hsieh AH, Walsh AL, Palmer EI, Chin JR (2002) Mechanobiology of the intervertebral disc. Biochem Soc Trans 30:853–858

    Article  PubMed  CAS  Google Scholar 

  29. Månsson B, Wenglén C, Mörgelin M, Saxne T, Heinegård D (2001) Association of chondroadherin with collagen type II. J Biol Chem 276:32883–32888

    Article  PubMed  Google Scholar 

  30. Masuda K (2008) Biological repair of the degenerated intervertebral disc by the injection of growth factors. Eur Spine J 17(Suppl 4):441–451

    Google Scholar 

  31. Masuda K, An HS (2006) Prevention of disc degeneration with growth factors. Eur Spine J 15(Suppl 3):S422–S432

    Google Scholar 

  32. Mayer HM, Wiechert K, Korge A, Qose I (2002) Minimally invasive total disc replacement: surgical technique and preliminary clinical results. Eur Spine J 11 (Suppl 2):S124–S130

    Google Scholar 

  33. McLean IW, Nakane PK (1974) Periodate–lysine–paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem 22:1077–1083

    Article  PubMed  CAS  Google Scholar 

  34. Melrose J, Smith S, Ghosh P (2000) Differential expression of proteoglycan epitopes by ovine intervertebral disc cells. J Anat 197(Pt 2):189–198

    Article  PubMed  CAS  Google Scholar 

  35. Mizuno M, Fujisawa R, Kuboki Y (1996) Bone chondroadherin promotes attachment of osteoblastic cells to solid-state substrates and shows affinity to collagen. Calcif Tissue Int 59:163–167

    Article  PubMed  CAS  Google Scholar 

  36. Neame PJ, Sommarin Y, Boynton RE, Heinegård D (1994) The structure of a 38-kDa leucine-rich protein (chondroadherin) isolated from bovine cartilage. J Biol Chem 269:21547–21554

    PubMed  CAS  Google Scholar 

  37. Oegema TR Jr (2002) The role of disc cell heterogeneity in determining disc biochemistry: a speculation. Biochem Soc Trans 30:839–844

    Article  PubMed  CAS  Google Scholar 

  38. Roberts N, Hogg D, Whitehouse GH, Dangerfield P (1998) Quantitative analysis of diurnal variation in volume and water content of lumbar intervertebral discs. Clin Anat 11:1–8

    Article  PubMed  CAS  Google Scholar 

  39. Roberts S, Evans EH, Kletsas D, Jaffray DC, Eisenstein SM (2006) Senescence in human intervertebral discs. Eur Spine J 15(Suppl 3):S312–S316

    Google Scholar 

  40. Roberts S, Menage J, Sivan S, Urban JP (2008) Bovine explant model of degeneration of the intervertebral disc. BMC Musculoskelet Disord 9:24

    Article  PubMed  Google Scholar 

  41. Roberts S, Urban JP, Evans H, Eisenstein SM (1996) Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 21:415–420

    Article  PubMed  CAS  Google Scholar 

  42. Rosenberg L (1971) Chemical basis for the histological use of safranin O in the study of articular cartilage. J Bone Jt Surg Am 53:69–82

    CAS  Google Scholar 

  43. Roughley P, Hoemann C, DesRosiers E, Mwale F, Antoniou J, Alini M (2006) The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation. Biomaterials 27:388–396

    Article  PubMed  CAS  Google Scholar 

  44. Selinummi J, Seppala J, Yli-Harja O, Puhakka JA (2005) Software for quantification of labeled bacteria from digital microscope images by automated image analysis. Biotechniques 39:859–863

    Article  PubMed  CAS  Google Scholar 

  45. Shen Z, Gantcheva S, Månsson B, Heinegård D, Sommarin Y (1998) Chondroadherin expression changes in skeletal development. Biochem J 330:549–557

    PubMed  CAS  Google Scholar 

  46. Sztrolovics R, Alini M, Roughley PJ, Mort JS (1997) Aggrecan degradation in human intervertebral disc and articular cartilage. Biochem J 326(Pt 1):235–241

    PubMed  CAS  Google Scholar 

  47. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  48. Urban JP (2000) Role of mechanical constraints in the maintenance and degradation of articular cartilage. Rev Prat 50:9–12

    PubMed  CAS  Google Scholar 

  49. Wang JC, Kabo JM, Tsou PM, Halevi L, Shamie AN (2005) The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model. Spine J 5:64–70

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by financial support from AOSpine grant number AOSBR-07-07, the Canadian Arthritis Network and the Shriners of North America.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisbet Haglund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jim, B., Steffen, T., Moir, J. et al. Development of an intact intervertebral disc organ culture system in which degeneration can be induced as a prelude to studying repair potential. Eur Spine J 20, 1244–1254 (2011). https://doi.org/10.1007/s00586-011-1721-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-011-1721-x

Keywords

Navigation