Skip to main content

Advertisement

Log in

The influence of torsion on disc herniation when combined with flexion

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The role of torsion in the mechanical derangement of intervertebral discs remains largely undefined. The current study sought to investigate if torsion, when applied in combination with flexion, affects the internal failure mechanics of the disc wall when exposed to high nuclear pressure. Thirty ovine lumbar motion segments were each positioned in 2° axial rotation plus 7° flexion. Whilst maintained in this posture, the nucleus of each segment was gradually injected with a viscous radio-opaque gel, via an injection screw placed longitudinally within the inferior vertebra, until failure occurred. Segments were then inspected using micro-CT and optical microscopy in tandem. Five motion segments failed to pressurize correctly. Of the remaining 25 successfully tested motion segments, 17 suffered vertebral endplate rupture and 8 suffered disc failure. Disc failure occurred in mature motion segments significantly more often than immature segments. The most common mode of disc failure was a central posterior radial tear involving a systematic annulus–endplate–annulus failure pattern. The endplate portion of these radial tears often propagated contralateral to the direction of applied axial rotation, and, at the lateral margin, only those fibres inclined in the direction of the applied torque were affected. Apart from the 2° of applied axial rotation, the methods employed in this study replicated those used in a previously published study. Consequently, the different outcome obtained in this study can be directly attributed to the applied axial rotation. These inter-study differences show that when combined with flexion, torsion markedly reduces the nuclear pressure required to form clinically relevant radial tears that involve cartilaginous endplate failure. Conversely, torsion appears to increase the disc wall’s resistance to radial tears that do not involve cartilaginous endplate failure, effectively halving the disc wall’s overall risk of rupture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Farfan HF (1969) Effects of torsion on the intervertebral joints. Can J Surg 12:336–341

    CAS  PubMed  Google Scholar 

  2. Farfan HF, Cossette JW, Robertson GH, Wells RV, Kraus H (1970) The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration. J Bone Joint Surg Am 52:468–497

    CAS  PubMed  Google Scholar 

  3. Adams MA, Hutton WC (1981) The relevance of torsion to the mechanical derangement of the lumbar spine. Spine 6:241–248

    Article  CAS  PubMed  Google Scholar 

  4. Gunzburg R, Hutton W, Fraser R (1991) Axial rotation of the lumbar spine and the effect of flexion. An in vitro and in vivo biomechanical study. Spine 16:22–28

    Article  CAS  PubMed  Google Scholar 

  5. Ochia RS, Inoue N, Renner SM, Lorenz EP, Lim TH, Andersson GB, An HS (2006) Three-dimensional in vivo measurement of lumbar spine segmental motion. Spine 31:2073–2078

    Article  PubMed  Google Scholar 

  6. Pearcy M, Portek I, Shepherd J (1984) Three-dimensional X-ray analysis of normal movement in the lumbar spine. Spine 9:294–297

    Article  CAS  PubMed  Google Scholar 

  7. Plamondon A, Gagnon M, Maurais G (1988) Application of a stereoradiographic method for the study of intervertebral motion. Spine 13:1027–1032

    Article  CAS  PubMed  Google Scholar 

  8. Drake JD, Aultman CD, McGill SM, Callaghan JP (2005) The influence of static axial torque in combined loading on intervertebral joint failure mechanics using a porcine model. Clin Biomech (Bristol, Avon) 20:1038–1045

    Article  Google Scholar 

  9. Kelsey JL, Githens PB, White AA 3rd, Holford TR, Walter SD, O’Connor T, Ostfeld AM, Weil U, Southwick WO, Calogero JA (1984) An epidemiologic study of lifting and twisting on the job and risk for acute prolapsed lumbar intervertebral disc. J Orthop Res 2:61–66

    Article  CAS  PubMed  Google Scholar 

  10. Fazey PJ, Song S, Monsas S, Johansson L, Haukalid T, Price RI, Singer KP (2006) An MRI investigation of intervertebral disc deformation in response to torsion. Clin Biomech (Bristol, Avon) 21:538–542

    Article  Google Scholar 

  11. Schmidt H, Kettler A, Heuer F, Simon U, Claes L, Wilke HJ (2007) Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading. Spine 32:748–755

    Article  PubMed  Google Scholar 

  12. Lindblom K (1944) Protrusions of disks and nerve compression in the lumbar region. Acta Radiol 25:195–212

    Article  Google Scholar 

  13. Hirsch C, Schajowicz F (1952) Studies on structural changes in the lumbar annulus fibrosus. Acta Orthop Scand 22:184–231

    Article  Google Scholar 

  14. Ebeling U, Reulen HJ (1992) Are there typical localisations of lumbar disc herniations? A prospective study. Acta Neurochir (Wien) 117:143–148

    Article  CAS  Google Scholar 

  15. Jackson RP, Becker GJ, Jacobs RR, Montesano PX, Cooper BR, McManus GE (1989) The neuroradiographic diagnosis of lumbar herniated nucleus pulposus: I. A comparison of computed tomography (CT), myelography, CT-myelography, discography, and CT-discography. Spine 14:1356–1361

    Article  CAS  PubMed  Google Scholar 

  16. Maezawa S, Muro T (1992) Pain provocation at lumbar discography as analyzed by computed tomography/discography. Spine 17:1309–1315

    Article  CAS  PubMed  Google Scholar 

  17. Veres SP, Robertson PA, Broom ND (2009) The morphology of acute disc herniation: a clinically relevant model defining the role of flexion. Spine 34:2288–2296

    Article  PubMed  Google Scholar 

  18. Veres SP, Robertson PA, Broom ND (2008) ISSLS prize winner: Microstructure and mechanical disruption of the lumbar disc annulus: part II: how the annulus fails under hydrostatic pressure. Spine 33:2711–2720

    Article  PubMed  Google Scholar 

  19. Schechtman H, Robertson PA, Broom ND (2006) Failure strength of the bovine caudal disc under internal hydrostatic pressure. J Biomech 39:1401–1409

    Article  PubMed  Google Scholar 

  20. Pezowicz CA, Schechtman H, Robertson PA, Broom ND (2006) Mechanisms of annular failure resulting from excessive intradiscal pressure: a microstructural–micromechanical investigation. Spine 31:2891–2903

    Article  PubMed  Google Scholar 

  21. Ninomiya M, Muro T (1992) Pathoanatomy of lumbar disc herniation as demonstrated by computed tomography/discography. Spine 17:1316–1322

    Article  CAS  PubMed  Google Scholar 

  22. Moore RJ, Vernon-Roberts B, Fraser RD, Osti OL, Schembri M (1996) The origin and fate of herniated lumbar intervertebral disc tissue. Spine 21:2149–2155

    Article  CAS  PubMed  Google Scholar 

  23. Schmid G, Witteler A, Willburger R, Kuhnen C, Jergas M, Koester O (2004) Lumbar disk herniation: correlation of histologic findings with marrow signal intensity changes in vertebral endplates at MR imaging. Radiology 231:352–358

    Article  PubMed  Google Scholar 

  24. Bass EC, Ashford FA, Segal MR, Lotz JC (2004) Biaxial testing of human annulus fibrosus and its implications for a constitutive formulation. Ann Biomed Eng 32:1231–1242

    Article  CAS  PubMed  Google Scholar 

  25. Holzapfel GA, Schulze-Bauer CA, Feigl G, Regitnig P (2005) Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechanobiol 3:125–140

    Article  CAS  PubMed  Google Scholar 

  26. Skaggs DL, Weidenbaum M, Iatridis JC, Ratcliffe A, Mow VC (1994) Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus. Spine 19:1310–1319

    Article  CAS  PubMed  Google Scholar 

  27. Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M (1996) The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 98:996–1003

    Article  CAS  PubMed  Google Scholar 

  28. Urban JP, McMullin JF (1988) Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration. Spine 13:179–187

    Article  CAS  PubMed  Google Scholar 

  29. Adams MA, McNally DS, Dolan P (1996) ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 78:965–972

    Article  CAS  PubMed  Google Scholar 

  30. Thompson JP, Pearce RH, Schechter MT, Adams ME, Tsang IK, Bishop PB (1990) Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine 15:411–415

    Article  CAS  PubMed  Google Scholar 

  31. Heliovaara M, Knekt P, Aromaa A (1987) Incidence and risk factors of herniated lumbar intervertebral disc or sciatica leading to hospitalization. J Chronic Dis 40:251–258

    Article  CAS  PubMed  Google Scholar 

  32. Bernick S, Cailliet R (1982) Vertebral end-plate changes with aging of human vertebrae. Spine 7:97–102

    Article  CAS  PubMed  Google Scholar 

  33. Adams MA, Hutton WC (1982) Prolapsed intervertebral disc. A hyperflexion injury 1981 Volvo Award in Basic Science. Spine 7:184–191

    Article  CAS  PubMed  Google Scholar 

  34. Adams MA, Hutton WC (1985) Gradual disc prolapse. Spine 10:524–531

    Article  CAS  PubMed  Google Scholar 

  35. Gordon SJ, Yang KH, Mayer PJ, Mace AH Jr, Kish VL, Radin EL (1991) Mechanism of disc rupture. A preliminary report. Spine 16:450–456

    Article  CAS  PubMed  Google Scholar 

  36. Marchand F, Ahmed AM (1990) Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine 15:402–410

    Article  CAS  PubMed  Google Scholar 

  37. Lu YM, Hutton WC, Gharpuray VM (1996) Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model. Spine 21:2570–2579

    Article  CAS  PubMed  Google Scholar 

  38. Aultman CD, Scannell J, McGill SM (2005) The direction of progressive herniation in porcine spine motion segments is influenced by the orientation of the bending axis. Clin Biomech (Bristol, Avon) 20:126–129

    Article  Google Scholar 

  39. Costello RF, Beall DP (2007) Nomenclature and standard reporting terminology of intervertebral disk herniation. Magn Reson Imaging Clin N Am 15:167–174

    Article  PubMed  Google Scholar 

  40. Fardon DF, Milette PC (2001) Nomenclature and classification of lumbar disc pathology. Recommendations of the Combined task Forces of the North American Spine Society, American Society of Spine Radiology, and American Society of Neuroradiology. Spine 26:E93–E113

    Article  CAS  PubMed  Google Scholar 

  41. Knop-Jergas BM, Zucherman JF, Hsu KY, DeLong B (1996) Anatomic position of a herniated nucleus pulposus predicts the outcome of lumbar discectomy. J Spinal Disord 9:246–250

    Article  CAS  PubMed  Google Scholar 

  42. Aprill C, Bogduk N (1992) High-intensity zone: a diagnostic sign of painful lumbar disc on magnetic resonance imaging. Br J Radiol 65:361–369

    Article  CAS  PubMed  Google Scholar 

  43. Ohnmeiss DD, Vanharanta H, Ekholm J (1999) Relation between pain location and disc pathology: a study of pain drawings and CT/discography. Clin J Pain 15:210–217

    Article  CAS  PubMed  Google Scholar 

  44. Hirsch C, Schajowicz F (1953) Studies on structural changes in the lumbar annulus fibrosus. Acta Orthop Scand 22:184–231

    CAS  PubMed  Google Scholar 

  45. Vernon-Roberts B, Moore RJ, Fraser RD (2007) The natural history of age-related disc degeneration: the pathology and sequelae of tears. Spine 32:2797–2804

    Article  PubMed  Google Scholar 

  46. Drake JD, Dobson H, Callaghan JP (2008) The influence of posture and loading on interfacet spacing: an investigation using magnetic resonance imaging on porcine spinal units. Spine 33:E728–E734

    Article  PubMed  Google Scholar 

  47. Drake JD, Callaghan JP (2008) Do flexion/extension postures affect the in vivo passive lumbar spine response to applied axial twist moments? Clin Biomech (Bristol, Avon) 23:510–519

    Article  Google Scholar 

  48. Hindle RJ, Pearcy MJ (1989) Rotational mobility of the human back in forward flexion. J Biomed Eng 11:219–223

    Article  CAS  PubMed  Google Scholar 

  49. Pearcy MJ (1993) Twisting mobility of the human back in flexed postures. Spine 18:114–119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors are grateful for the award of grants in support of this research from Medtronic Australasia, The New Zealand Orthopaedic Association Wishbone Trust, Education New Zealand and the University of Auckland.

Conflict of interest statement

Funds in support of this research were received from: Medtronic, The NZOA Wishbone Trust, The University of Auckland, and Education New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel P. Veres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veres, S.P., Robertson, P.A. & Broom, N.D. The influence of torsion on disc herniation when combined with flexion. Eur Spine J 19, 1468–1478 (2010). https://doi.org/10.1007/s00586-010-1383-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-010-1383-0

Keywords

Navigation