Skip to main content
Log in

A biomechanical rationale for C1-ring osteosynthesis as treatment for displaced Jefferson burst fractures with incompetency of the transverse atlantal ligament

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Nonsurgical treatment of Jefferson burst fractures (JBF) confers increased rates of C1–2 malunion with potential for cranial settling and neurologic sequels. Hence, fusion C1–2 was recognized as the superior treatment for displaced JBF, but sacrifies C1–2 motion. Ruf et al. introduced the C1-ring osteosynthesis (C1–RO). First results were favorable, but C1–RO was not without criticism due to the lack of clinical and biomechanical data serving evidence that C1–RO is safe in displaced JBF with proven rupture of the transverse atlantal ligament (TAL). Therefore, our objectives were to perform a biomechanical analysis of C1–RO for the treatment of displaced Jefferson burst fractures (JBF) with incompetency of the TAL. Five specimens C0–2 were subjected to loading with posteroanterior force transmission in an electromechanical testing machine (ETM). With the TAL left intact, loads were applied posteriorly via the C1–RO ramping from 10 to 100 N. Atlantoaxial subluxation was measured radiographically in terms of the anterior antlantodental interval (AADI) with an image intensifier placed surrounding the ETM. Load–displacement data were also recorded by the ETM. After testing the TAL-intact state, the atlas was osteotomized yielding for a JBF, the TAL and left lateral joint capsule were cut and the C1–RO was accomplished. The C1–RO was subjected to cyclic loading, ramping from 20 to 100 N to simulate post-surgery in vivo loading. Afterwards incremental loading (10–100 N) was repeated with subsequent increase in loads until failure occurred. Small differences (1–1.5 mm) existed between the radiographic AADI under incremental loading (10–100 N) with the TAL-intact as compared to the TAL-disrupted state. Significant differences existed for the beginning of loading (10 N, P = 0.02). Under physiological loads, the increase in the AADI within the incremental steps (10–100 N) was not significantly different between TAL-disrupted and TAL-intact state. Analysis of failure load (FL) testing showed no significant differences among the radiologically assessed displacement data (AADI) and that of the ETM (P = 0.5). FL was Ø297.5 ± 108.5 N (range 158.8–449.0 N). The related displacement assessed by the ETM was Ø5.8 ± 2.8 mm (range 2.3–7.9). All specimens succeeded a FL >150 N, four of them >250 N and three of them >300 N. In the TAL-disrupted state loads up to 100 N were transferred to C1, but the radiographic AADI did not exceed 5 mm in any specimen. In conclusion, reconstruction after displaced JBF with TAL and one capsule disrupted using a C1–RO involves imparting an axial tensile force to lift C0 into proper alignment to the C1–2 complex. Simultaneous compressive forces on the C1-lateral masses and occipital condyles allow for the recreation of the functional C0–2 ligamentous tension band and height. We demonstrated that under physiological loads, the C1–RO restores sufficient stability at C1–2 preventing significant translation. C1–RO might be a valid alternative for the treatment of displaced JBF in comparison to fusion of C1–2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ames CP, Acosta F, Nottmeier E (2005) Novel treatment of basilar invagination resulting from an untreated C-1 fracture associated with transverse ligament avulsion. J Neurosurg Spine 2:83–87

    Article  PubMed  Google Scholar 

  2. Anderson P (2008) Atlas burst fractures. Spineweek, Geneva

  3. Apostolides PJ, Theodore N, Karahalios DG, Sonntag VK (1997) Triple anterior screw fixation of an acute combination atlas-axis fracture: case report. J Neurosurg 87:96–99

    Article  CAS  PubMed  Google Scholar 

  4. Ben-Galim PJ, Sibai TA, Hipp JA, Heggeness MH, Reitman CA (2008) Internal decapitation: survival after head to neck dissociation. Spine 33:1744–1749

    Article  PubMed  Google Scholar 

  5. Blauth M, Richter M, Lange U (1999) Transarticular screw fixation C1/C2 in traumatic atlantoaxial instabilities. Comparison between percutaneous and open procedures. Orthopaede 28:651–661 (in German)

    CAS  Google Scholar 

  6. Boden SD, Clark CR (2004) Rheumatoid arthritis of the cervical spine. Cervical Spine

  7. Böhm H, Kayser R, El Saghir H, Heyde C-E (2006) Direct osteosynthesis of unstable atlas fractures. Unfallch 109:754–760 (in German)

    Article  Google Scholar 

  8. Bono CM, Vaccaro AR, Fehlings M, Fisher C, Dvorak M, Ludwig S, Harrop (2006) Measurement techniques for loewer cervical spine injuries. Spine 31:603–609

    Google Scholar 

  9. Bono CM, Vaccaro AR, Fehlings M, Fisher C, Dvorak M, Ludwig S, Harrop J (2007) Measurement techniques for upper cervical spine injuries. Spine 32:593–600

    Article  PubMed  Google Scholar 

  10. Botelho RV, Palma AMS, Abgussen CMB, Fontoura EAF (2000) Traumatic vertical atlantoaxial instability: the risk associated with skull traction: case report and review of literature. Eur Spine J 9:430–433

    Article  CAS  PubMed  Google Scholar 

  11. Bransford R, Falicov A, Nguyen Q, Chapman J (2009) Unilateral C-1 lateral mass sagittal split fracture: an unstable Jefferson fracture variant. J Neurosurg Spine 10:466–473

    Article  PubMed  Google Scholar 

  12. Cheng BC, Hafez MA, Cunningham B, Serhan H, Welch WC (2007) Biomechanical evaluation of occipitocervicothoracic fusion: impact of partial or sequential fixation. Spine J 8:821–826

    Article  PubMed  Google Scholar 

  13. Dickman CA, Greene KA, Sonntag VK (1996) Injuries involving the transverse atlantal ligament: classification and treatment guidelines based upon experience with 39 injuries. Neurosurg 38:44–50

    Article  CAS  Google Scholar 

  14. Dickman CA, Mamourian A, Sonntag VKH (1991) Magnetic resonance imaging of the transverse atlantal ligament for the evaluation of atlantoaxial instability. J Neurosurg 75:221–227

    Article  CAS  PubMed  Google Scholar 

  15. Dickmann C (2004) Letter to the editor: Ruf et al. Transoral reduction and osteosynthesis C1 as a function-preserving option in the treatment of unstable Jefferson fractures. Spine 29:2196

    Article  Google Scholar 

  16. Douglas TS, Sanders V, Machers S, Pitcher R, van As AB (2007) Digital radiographic measurement of the atlantodental interval in children. J Pediatr Orthop 27:23–26

    PubMed  Google Scholar 

  17. Dreyer SJ, Boden SD (1999) Natural history of rheumatoid arthritis of the cervical spine. Clin Orthop Relat Res 366:98–106

    Article  PubMed  Google Scholar 

  18. Dudda M, Frangen TM, Russe O, Muhr G, Schinkel C (2006) Temporary percutaneous spondylodesis C1–2 and halo vest immobilisation. An alternative treatment of complex injuries of the upper cervical spine. Unfallch 12:1099–1102

    Article  Google Scholar 

  19. Dvorak J, Schneider E, Saldinger P, Rahn B (1988) Biomechanics of the craniocervical region: the alar and transverse ligaments. J Orthop Res 6:452–461

    Article  CAS  PubMed  Google Scholar 

  20. Dvorak MF, Johnson MG, Boyd M, Johnson G, Kwon BK, Fisher CG (2005) Long-term health-related quality of life outcomes following Jefferson-type burst fractures of the atlas. J Neurosurg Spine 2:411–417

    Article  PubMed  Google Scholar 

  21. Fielding JW, GVB Cochran, Lawsing JF, Hohl M (1974) Tears of the transverse ligament of the atlas: a clinical and biomechanical study. J Bone Joint Surg 56:1683–1691

    CAS  PubMed  Google Scholar 

  22. Gehweiler JA, Duff DE, Martinez S, Miller MD, Clark WM (1976) Fractures of the atlas vertebra. Skelet Radiol 1:97–102

    Google Scholar 

  23. Goel A, Laheri V (1994) Plate and screw fixation for atlanto-axial subluxation. Acta Neurochir 129:47–53

    Article  CAS  Google Scholar 

  24. Guiot B, Fessler RG (1999) Complex atlantoaxial fractures. J Neurosurg (Spine-2) 91:139–143

    Article  CAS  Google Scholar 

  25. Harms J, Melcher RP (2001) Posterior C1–C2 fusion with polyaxial screw and rod fixation. Spine 26:2467–2471

    Article  CAS  PubMed  Google Scholar 

  26. Hauck S, Beisse R, Gonschorek O (2008) Stabilization of unstable fracture of the atlas and dens with the Harms-construct—clinical outcomes. Eur Spine J 17:1540

    Article  Google Scholar 

  27. Hein C, Richter H-P, Rath SA (2002) Atlantoaxial screw fixation for the treatment of isolated and combined unstable Jefferson fractures—experiences with 8 patients. Acta Neurochir 144:1187–1192

    Article  CAS  Google Scholar 

  28. Heller JG, Amrani J, Hutton WC (1993) Transverse ligament failure: a biomechanical study. J Spinal Disord 6:162–165

    CAS  PubMed  Google Scholar 

  29. Ivancic PC, Beauchman NN, Mo F, Lawrence BD (2009) Biomechanics of halo-vest and dens screw fixation for type II odontoid fracture. Spine 34:484–490

    Article  PubMed  Google Scholar 

  30. Johnson RM, Hart DL, Simons EF, Ramsby GR, Southwick WO (1977) Cervical orthoses: a study comparing their effectiveness in restricting cervical motion in normal subjects. J Bone Joint Surg 59-A:332–339

    Google Scholar 

  31. Kirckpatrick JS, Sheils T, Theiss SM (2004) Type-III dens fracture with distraction: an unstable injury. J Bone Joint Surg A 86:2514–2518

    Google Scholar 

  32. Klewno CP, Zampini JM, White AP, Kasper EM, McGuire KJ (2008) Survival after concurrent traumatic dislocation of the atlantooccipital and atlanto-axial joints. Spine 33:E659–E662

    Article  Google Scholar 

  33. Koller H, Acosta F, Tauber M, Komarek E, Fox M, Moursy M, Hitzl W (2009) C2-fractures - part I: quantitative morphology of the C2 vertebra is a prerequisite for the radiographic assessment of posttraumatic C2-alignment and the investigation of clinical outcomes. Eur Spine J

  34. Koller H, Holz U, Assuncao A, Oberst M, Ulbricht D (2006) Traumatic atlantooccipital dislocation. Critical review: diagnosis, classification and treatment, and explanative case report. Eur J Trauma 3:271–279

    Article  Google Scholar 

  35. Koller H, Kammermeier V, Ulbricht D, Assuncao A, Karolus S, van den Berg B, Holz U (2006) Anterior retropharyngeal fixation C1–2 for stabilization of atlantoaxial instabilities: study of feasibility, technical descriotion and preliminary results. Eur Spine J 15:1326–1338

    Article  PubMed  Google Scholar 

  36. Koller H, Acosta F, Forstner R, Zenner J, Resch H, Tauber M, Lederer S, Auffarth A, Hitzl W (2009) C2-fractures: part II. A morphometrical analysis of computerized atlantoaxial motion, anatomical alignment and related clinical outcomes. Eur Spine J 18:1135–1153

    Google Scholar 

  37. Kontautas E, Ambrozaitis KV, Kalesinskas RJ, Spakauskas B (2005) Management of acute traumatic atlas fractures. J Spinal Disord Tech 18:402–405

    Article  PubMed  Google Scholar 

  38. Landell CD, van Peteghem PK (1988) Fractures of the atlas: classification treatment and morbidity. Spine 13:450–452

    Article  Google Scholar 

  39. Lee TT, Green BA, Petrin DR (1997) Treatment of stable burst fracture of the atlas (Jefferson fracture) with rigid cervical collar. Spine 15:1963–1967

    Google Scholar 

  40. Levine AM, Edwards CC (1991) Fractures of the atlas. J Bone Joint Surg 73-A:68–691

    Google Scholar 

  41. Ma XY, Yin Q, Wu ZH, Xia H, Liu JF, Xiang M, Zhao WD, Zhong SZ (2009) C1 pedicle screws versus C1 lateral mass screws: comparisons of pullout strengths and biomechanical stabilities. Spine 34:371–377

    Article  PubMed  Google Scholar 

  42. Maak TG, Tominaga Y, Panjabi MM, Ivancic PC (2006) Alar-, transverse, and apical ligament strain due to head-turned rear impact. Spine 31:632–638

    Article  PubMed  Google Scholar 

  43. McGuire Ra Jr, Harkey HL (1995) Primary treatment of unstable Jefferson’s fractures. J Spinal Disord 8:233–236

    Article  PubMed  Google Scholar 

  44. Melcher RP, Puttlitz CM, Kleinstueck FS, Lotz JC, Harms J, Ds Bradford (2002) Biomechanical testing of posterior atlantoaxial fixation techniques. Spine 27:2435–2440

    Article  PubMed  Google Scholar 

  45. Menendez JA, Wright Neill M (2007) Techniques for posterior C1–C2 stabilization. Neurosurg 60:S103–S111

    Article  Google Scholar 

  46. Nightingale RW, Winkelstein KEK, Richardson WJ, Luck JF, Myers BS (2002) Comparative strengths and structural properties of the upper and lower cervical spine in flexion and extension. J Biomech 35:725–732

    Article  PubMed  Google Scholar 

  47. Nockels RP, Shaffrey CI, Kanter A, Azeem S, York JE (2007) Occipitocervical fusion with rigid internal fixation: long-term follow-up data in 69 patients. J Neurosurg Spine 7:117–123

    Article  PubMed  Google Scholar 

  48. Oda T, Yonenobu K, Fujimura Y, Ishi Y, Nakahara S, Matsunaga S, Shimizu T, Matsumoto M (2009) Diagnostic validity of space available for the spinal cord at C1 level for cervical myelopathy in patients with rheumatoid arthritis. Spine 34:1395–1398

    Article  PubMed  Google Scholar 

  49. Panjabi M, Dvorak J, Duranceau J (1988) Three-dimensional movements of the upper cervical spine. Spine 13:726–730

    Article  CAS  PubMed  Google Scholar 

  50. Paus AC, Steen H, Roislien J, Mowinckel P, Teigland J (2008) High mortality rate in rheumatoid arthritis with subluxation of the cervical spine. Spine 33:2278–2283

    Article  PubMed  Google Scholar 

  51. Puttlitz CM, Goel VK, Clark CR, Traynelis VC, Scifert JL, Grosland NM (2000) Biomechanical rationale for the pathology of rheumatoid arthritis in the craniovertebral junction. Spine 25:1607–1616

    Article  CAS  PubMed  Google Scholar 

  52. Puttlitz CM, Melcher R, Kleinstueck FS, Harms J, Bradford DS, Lotz JC (2004) Stability analysis of the craniovertebral junction fixation techniques. J Bone Joint Surg 86-A:561–568

    PubMed  Google Scholar 

  53. Ramare S, Lazennec JY, Camelot C, Saillant G, Hansen S, Trabelsi R (1999) Vertical atlantoaxial dislocation. Eur Spine J 8:241–243

    Article  CAS  PubMed  Google Scholar 

  54. Rojas CA, Bertozzi JC, Martinez CR, Whitlow J (2007) Reassessment of the craniocervical junction: normal values on CT. AJNR 28:1819–1823

    Article  CAS  PubMed  Google Scholar 

  55. Ruf M, Melcher R, Harms J (2003) Transoral reduction and osteosynthesis C1 as a function-preserving option in the treatment of unstable Jefferson fractures. Spine 29:823–827

    Article  Google Scholar 

  56. Schären S, Jeanneret B (1999) Atlas fractures. Orthopaede 28:385–398 (in German)

    Article  Google Scholar 

  57. Spence KF, Decker S, Sell KW (1970) Bursting atlantal fracture associated with rupture of the TAL. J Bone Joint Surg 52-A:543–549

    Google Scholar 

  58. Stulik J, Krbec M (2003) Injuries of the atlas. Acta Chir Orthop Traumatol Cech 70:274–278

    CAS  PubMed  Google Scholar 

  59. Stulik J, Vyskocil T, Sebesta P, Kryl J (2006) Atlantoaxial fixation using the polyaxial screw-rod system. Eur Spine J 16:479–484

    Article  PubMed  Google Scholar 

  60. Tan J, Ni CH, li LJ, Zhou W, Qian L (2006) C1 lateral mass—C2 pedicle screws and crosslink compression for instable atlas fracture. Zhonghua Yi Xue Za Zhi 86:1743–1747

    PubMed  Google Scholar 

  61. Teo EC, Ng HW (2001) First cervical vertebra (atlas) fracture mechanism studies using finite element method. J Biomech 34:13–21

    Article  CAS  PubMed  Google Scholar 

  62. Tessitore E, Momjian A, Payer M (2008) Posterior reduction and fixation of an unstable Jefferson fracture with C1 lateral mass screws, C2 isthmus screws, and crosslink fixation: technical case report. Neurosurg ONS Suppl 1 63:100–103

  63. Werne S (1957) Studies in spontaneous atlas dislocations. Acta Orthop Scand 23(suppl):1–150

    CAS  Google Scholar 

  64. Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154

    Google Scholar 

  65. Willauschus WG, Kladny B, Beyer WF, Glückert K, Arnold H, Scheithauer R (1995) Lesions of the alar ligaments. Spine 20:2493–2498

    Article  CAS  PubMed  Google Scholar 

  66. Wolfla CE, Salerno SA, Pintar FA (2007) Comparison of contemporary occipitocervical instrumentation techniques with and without C1 lateral mass screws. Operat Neurosurg 61:87–93

    Article  Google Scholar 

  67. Yüksel KZ, Yüksel M, Gonzalez LF, Baek Seungwon MS, Heiserman JE, Sonntag VKH, Crawford NR (2008) Occipitocervical vertical distraction injuries: anatomical biomechanical, and 3-tesla magnetic resonance imaging investigation. Spine 33:2066–2073

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Koller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1080 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koller, H., Resch, H., Tauber, M. et al. A biomechanical rationale for C1-ring osteosynthesis as treatment for displaced Jefferson burst fractures with incompetency of the transverse atlantal ligament. Eur Spine J 19, 1288–1298 (2010). https://doi.org/10.1007/s00586-010-1380-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-010-1380-3

Keywords

Navigation