Skip to main content

Advertisement

Log in

Inter-observer reliability of detecting Dynesys pedicle screw using plain X-rays: a study on 50 post-operative patients

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Dynamic stabilisation system for the spine (Dynesys) relies on titanium screw purchase within the pedicle. Decision on osseointegration is important especially when the patient becomes symptomatic following initial good outcome. Loose screws make the construct non-functional especially in symptomatic patients. Removal of Dynesys may become necessary to control patient’s symptoms. In this study, we report interobserver reliability of X-ray for the interpretation of Dynesys pedicle screw osseointegration based on the diagnosis of “halo zone” and “Double halo zones” surrounding loose screw. Lumbar spine X-ray images of 50 patients in two views (AP and lateral) were selected from a random sample of 420 Dynesys patients. The total number of pedicle screws reviewed in this study was 260. The investigators (observers) were asked to state whether or not each pedicle screw is loose using “radiolucent zone sign”. Observers were two expert orthopaedic spine consultant surgeons and one expert consultant radiologist and four specialist registrars (SpR) in orthopaedics and radiology. SpR assessments were repeated after 4 months with instructions to use “double-halo sign” for loose screws. The evaluation of interobserver agreement was performed by obtaining a Kappa (K) index. Using “radiolucent zone sign”, Kappa Index (KI) among three consultants was 0.2198 at 95% CI (0.0520, 0.4916) while for all of the seven assessors (3 consultants and 4 SpR), KI was 0.1462 at 95% CI (0.0332, 0.2592). The use of “double-halo sign” was associated with KI of 0.666 at 95% CI (SE 0.83) among all of the 4 SpR. Based on plain X-ray “radiolucent zone sign”, the inter-observer reliability of detecting loose Dynesys pedicle screw was poor (Kappa index of 0.2). On the other hand, using plain X-ray “double-halo sign” was associated with improved inter-observer reliability and validity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Block MS, Kent JN, Kay JF (1987) Evaluation of hydroxylapatite-coated titanium dental implants in dogs. J Oral Maxillofac Surg 45:601–607. doi:10.1016/0278-2391(87)90270-9

    Article  PubMed  CAS  Google Scholar 

  2. Bordes-Monmeneu M, Bordes-Garcia V, Rodrigo-Baeza F, Saez D (2005) A dynamic neutralisation system for the spine. DYNESYS SYSTEM. Experience in 94 cases. Neurosurgery 16:499–506

    CAS  Google Scholar 

  3. Clokie CML, Warshawky H (1995) Morphologic and radioauto-graphic studies of bone formation in relation to titanium implants using rat tibia as a model. Int J Oral Maxillofac Implants 10:155–165

    PubMed  CAS  Google Scholar 

  4. Cook SD, Salkeld SL, Whitecloud TS et al (2000) Biomechanical evaluation and preliminary clinical experience with an expansive pedicle screw design. J Spinal Disord 13:230–236. doi:10.1097/00002517-200006000-00006

    Article  PubMed  CAS  Google Scholar 

  5. Dakhil-Jerew F, Shepperd J (2008) Outcome following posterior vs. Wiltse approaches to Dynesys. Abstract, Japanese Orthopaedic Association Congress, Sapporo, Japan. May 2008

  6. Dakhil-Jerew F, Shepperd J (2007) Outcome following Dynesys for the treatment of degenerative disc disease. Abstract. European Association of Neurosurgical Societies (EANS) Conference, Glasgow. 4th September 2007. Acta Neurochiurgica: PLIV

  7. Dakhil-Jerew F, Shepperd J (2007) Refinement of the clinical indications for the Dynamic Neutralisation System for the Spine. Abstract, British Orthopaedic Research Society. Manchester, 2008

  8. Dakhil-Jerew F, Shepperd J. (2007) Functional outcome following removal of Dynnesys. British Orthopaedic Research Society meeting, Dundee 2nd July 2007

  9. DeCoster TA, Heetderks DB, Downey DJ et al (1990) Optimizing bone screw pullout force. J Orthop Trauma 4:169–174. doi:10.1097/00005131-199004020-00012

    Article  PubMed  CAS  Google Scholar 

  10. De Lange G, de Putter C (1993) Structure of the bone interface to dental implants in vivo. J Oral Implantol 19:123–135

    PubMed  Google Scholar 

  11. De Lange GL, de Putter C, de Wijs FLJA (1990) Histological and ultrastructural appearance of the hydroxyapatite-bone interface. J Biomed Mater Res 24:829–845. doi:10.1002/jbm.820240704

    Article  PubMed  Google Scholar 

  12. Dubois B, de Germay B, Schaerer NS, Fennema P (1999) Dynamic neutralization: a new concept for restabilization of the spine. Lippincott Williams & Wilkins, Philadephia

    Google Scholar 

  13. Fini M, Giavaresi G, Greggi T, Martini L, Aldini NN, Parisini P, Giardino R (2003) Biological assessment of the bone-screw interface after insertion of uncoated and hydroxyapatite-coated pedicular screws in the osteopenic sheep. J Biomed Mater Res A 66(1):176–183

    Article  PubMed  CAS  Google Scholar 

  14. Gila FJ, Padrosb A, Maneroa JM et al (2001) Growth of bioactive surfaces on titanium and its alloys for orthopaedic and dental implants. Universidad Politecnica de Cataluna, Barcelona, Spain

    Google Scholar 

  15. Grob D, Benini A, Junge A, Mannion AF (2005) Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine 30(3):324–331

    Article  PubMed  Google Scholar 

  16. Hasegawa T, Inufusa A, Imai Y, Mikawa Y, Lim TH, An HS (2005) Hydroxyapatite-coating of pedicle screws improves resistance against pull-out force in the osteoporotic canine lumbar spine model: a pilot study. Spine J 5(3):239–243. doi:10.1016/j.spinee.2004.11.010

    Article  PubMed  Google Scholar 

  17. Kawaguchi H, McKee MD, Okamoto H, Nanci A (1993) Immunocytochemical and lectin-gold characterization of the interface between alveolar bone and implanted hydroxyapetite in the rate. Cells Mater 3:337–358

    Google Scholar 

  18. Krag MH, Beynnon BD, Pope MH et al (1986) An internal fixator for posterior application to short segments of the thoracic, lumbar or lumbosacral spine: design and testing. Clin Orthop Relat Res 203:75–98

    PubMed  Google Scholar 

  19. Kwok AW, Finkelstein JA, Woodside T et al (1996) Insertional torque and pull-out strengths of conical and cylindrical pedicle screws in cadaveric bone. Spine 21:2429–2434. doi:10.1097/00007632-199611010-00004

    Article  PubMed  CAS  Google Scholar 

  20. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174. doi:10.2307/2529310

    Article  PubMed  CAS  Google Scholar 

  21. Lapresle P, Missenard G (1995) Hydroxyapatite-coated Diapason screws: first clinical report. J Spinal Disord 8:31–39

    Google Scholar 

  22. Lonstein JE, Denis F, Perra JH, Pinto MR, Smith MD, Winter RB (1999) Complications associated with pedicle screws. JBJS 81(11):1519–1528

    CAS  Google Scholar 

  23. Louis R (1986) Fusion of the lumbar and sacral spine by internal fixation with screw plates. Clin Orthop Relat Res 203:18–33

    PubMed  Google Scholar 

  24. Lu WW, Luk KD, Cheung KC, Gui-Xing Q, Shen JX, Yuen L, Ouyang J, Leong JC (2004) Microfracture and changes in energy absorption to fracture of young vertebral cancellous bone following physiological fatigue loading. Spine 29(11):1196–1201. doi:10.1097/00007632-200406010-00007

    Article  PubMed  CAS  Google Scholar 

  25. Nanci A, McCarthy GF, Zalzal S, Clokie CML, Warshawsky H, McKee MD (1994) Tissue response to titanium implants in the rat tibia: ultrastructural, immunocytochemical and lectin-cytochemical characterization of the bone-titanium interface. Cells Mater 4:1–30

    CAS  Google Scholar 

  26. Niosi CA, Zhu QA, Wilson DC, Keynan O, Wilson DR, Oxland TR (2006) Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study. Eur Spine J 15:913–922. doi:10.1007/s00586-005-0948-9

    Article  PubMed  Google Scholar 

  27. Ohlin A, Karlsson M, Duppe H et al (1994) Complications after transpedicular stabilization of the spine: a survivorship analysis of 163 cases. Spine 19:2774–2779. doi:10.1097/00007632-199412150-00007

    Article  PubMed  CAS  Google Scholar 

  28. Pihlajamaki H, Myllynen P, Bostman O (1997) Complications of transpedicular lumbosacral fixation for non-traumatic disorders. J Bone Joint Surg Br 79-B:183–189. doi:10.1302/0301-620X.79B2.7224

    Article  Google Scholar 

  29. Roy-Camille R, Saillant G, Mazel C (1986) Internal fixation of the lumbar spine with pedicle screw plating. Clin Orthop Relat Res 203:7

    PubMed  Google Scholar 

  30. Steffee AD, Biscup RS, Sitkowski DJ (1986) Segmental spine plates with pedicle screw fixation. A new internal fixation device for disorders of the lumbar and thoracolumbar spine. Clin Orthop Relat Res 203:45

    PubMed  Google Scholar 

  31. Renner SM, Lim TH, Kim WJ, Katolik L, An HS, Andersson GB (2004) Augmentation of pedicle screw fixation strength using an injectable calcium phosphate cement as a function of injection timing and method. Spine 29(11):E212–E216

    Article  PubMed  Google Scholar 

  32. Sandén B, Olerud C, Larsson S (2001) Hydroxyapatite coating enhances fixation of loaded pedicle screws: a mechanical in vivo study in sheep. Eur Spine J 10(4):334–339

    Article  PubMed  Google Scholar 

  33. Sandén B, Olerud C, Petrén-Mallmin M, Johansson C, Larsson S (2004) The significance of radiolucent zones surrounding pedicle screws. Definition of screw loosening in spinal instrumentation. J Bone Joint Surg Br 86(3):457–461

    Article  PubMed  Google Scholar 

  34. Sandén B, Olerud C, Petrén-Mallmin M, Larsson S (2002) Hydroxyapatite coating improves fixation of pedicle screws. A clinical study. J Bone Joint Surg Br 84(3):387–391

    Article  PubMed  Google Scholar 

  35. Schatzker J, Horne JG, Sumner-Smith G (1975) The effect of movement on the holding power of screws in bone. Clin Orthop Relat Res 111:257–262

    Article  PubMed  Google Scholar 

  36. Schmoelz HuberJ, Nydegger T, Claes L, Wilke H (2006) Influence of a dynamic stabilization system on load bearing of a bridged disc: an in vitro study of intradiscal pressure. Eur Spine J 15(8):1276–1285. doi:10.1007/s00586-005-0032-5

    Article  PubMed  CAS  Google Scholar 

  37. Schnake KJ, Schaeren S, Jeanneret B (2006) Dynamic stabilization in addition to decompression for lumbar spinal stenosis with degenerative spondylolisthesis. Spine 31(4):442–449. doi:10.1097/01.brs.0000200092.49001.6e

    Article  PubMed  Google Scholar 

  38. Sell P, Collins M, Dove J (1988) Pedical screws: axial pull-out strength in the lumbar spine. Spine 13:1075–1076. doi:10.1097/00007632-198809000-00018

    Article  PubMed  CAS  Google Scholar 

  39. Shepard MF, Wang JC, Oshtory R, Yoo J, Kabo JM (2002) Enhancement of pedicle screw fixation through washers. Clin Orthop Relat Res (395):249–254

    Article  PubMed  Google Scholar 

  40. Sidhu KS, Herkowitz HN (1997) Spinal instrumentation in the management of degenerative disorders of the lumbar spine. Clin Orthop Relat Res 355:39–53

    Google Scholar 

  41. Stoll TM, Dubois G, Schwarzenbach O (2002) The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J 11(Suppl 2):S170–S178

    PubMed  Google Scholar 

  42. Taniwaki Y, Takemasa R, Tani T, Mizobuchi H, Yamamoto H (2003) Enhancement of pedicle screw stability using calcium phosphate cement in osteoporotic vertebrae: in vivo biomechanical study. J Orthop Sci 8(3):408–414. doi:10.1007/s10776-003-0639-6

    Article  PubMed  CAS  Google Scholar 

  43. Thomas KA, Kay JF, Cook SD et al (1987) Effect of surface microstructure and hydroxylapatite coating on the mechanical strengths and histologic profiles of titanium implantmaterials. J Biomed Mater Res 21(12):1395–1414

    Article  PubMed  CAS  Google Scholar 

  44. Tokuhashi Y, Matsuzaki H, Oda H, Uei H (2008) Clinical course and significance of the clear zone around the pedicle screws in the lumbar degenerative disease. Spine 33(8):903–908

    Article  PubMed  Google Scholar 

  45. Turner AW, Gillies RM, Svehla MJ, Saito M, Walsh WR (2003) Hydroxyapatite composite resin cement augmentation of pedicle screw fixation. Clin Orthop Relat Res 406:253–261

    Article  PubMed  Google Scholar 

  46. Weinstein JN, Rydevik BL, Rauschning W (1992) Anatomic and technical considerations of pedicle screw fixation. Clin Orthop Relat Res 284:34–46

    PubMed  Google Scholar 

  47. Welch WC, Cheng BC, Awad TE, Davis R, Maxwell JH, Delamarter R, Wingate JK, Sherman J, Macenski MM (2007) Clinical outcomes of the Dynesys dynamic neutralization system: 1-year preliminary results. Neurosurg Focus 22(1):E8

    Article  PubMed  Google Scholar 

  48. Yazu M, Kin A, Kosaka R, Kinoshita M, Abe M (2005) Efficacy of novel-concept pedicle screw fixation augmented with calcium phosphate cement in the osteoporotic spine. J Orthop Sci 10(1):56–61. doi:10.1007/s00776-004-0862-8

    Article  PubMed  Google Scholar 

  49. Yildirim OS, Aksakal B, Hanyaloglu SC, Erdogan F, Okur A (2006) Hydroxyapatite dip coated and uncoated titanium poly-axial pedicle screws: an in vivo bovine model. Spine 31(8):E215–E220

    Article  PubMed  Google Scholar 

  50. Zindrick MR, Wiltse LL, Doornik A, Widell EH, Knight GW, Patwardhan AG, Thomas JC, Rothman SL, Fields BT (1987) Analysis of the morphometric characteristics of the thoracic and lumbar pedicles. Spine 12(2):160–166

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

For Guy R, Selmon G, Bowman N, Shah D, El-Metwally A for their contribution in this study.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fras Dakhil-Jerew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dakhil-Jerew, F., Jadeja, H., Cohen, A. et al. Inter-observer reliability of detecting Dynesys pedicle screw using plain X-rays: a study on 50 post-operative patients. Eur Spine J 18, 1486–1493 (2009). https://doi.org/10.1007/s00586-009-1071-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-009-1071-0

Keywords

Navigation