Skip to main content
Log in

Three-dimensional analysis of cervical spine motion: reliability of a computer assisted magnetic tracking device compared to inclinometer

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

We aimed to investigate the reliability and reproducibility of a magnetic tracking technique for the assessment of overall cervical spine motion (principal and coupled movements). Ten asymptomatic male volunteers with a mean age of 29.3 years (range 20–37 years) were included in the study. Flexion, extension, left and right lateral bending and left and right axial rotation were measured using a magnetic tracking device (MTD) mounted onto a custom head-piece. For rotational movements in the frontal and sagittal planes the results were compared with the measurements of two standard inclinometers. Intra-observer, inter-observer and intra-instrument reliability was assessed with the intraclass correlation coefficient method. There were no significant differences for all motion measurements between the MTD and the inclinometer. High inter-observer reliability was found in flexion, extension, axial rotation and lateral bending indicating that the testing routine is applicable for different examiners. The intra-observer variability was high in flexion and extension, whereas in lateral bending the reliability coefficients were lower and displayed a fair to good reliability for most of the measurements with the MTD. The results of the MTD were found to be highly comparable with the inclinometer results with an inter-instrument correlation coefficient ranging from 0.88 to 0.99. The MTD is a reliable, reproducible method for three-dimensional motion analysis of the cervical spine and therefore a valuable method both for the clinical assessment of various degenerative and traumatic disorders and as a supplement of different therapeutic procedures and rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alund M, Larsson SE (1990) Three-dimensional analysis of neck motion. A clinical method. Spine 15:87–91. doi:10.1097/00007632-199002000-00007

    Article  PubMed  CAS  Google Scholar 

  2. AMA (1993) American Medical Association. Guides to the evaluation of permanent impairment. AMA, Chicago

  3. Antonaci F, Ghirmai S, Bono G, Nappi G (2000) Current methods for cervical spine movement evaluation: a review. Clin Exp Rheumatol 18:S45–S52

    PubMed  CAS  Google Scholar 

  4. Assink N, Bergman GJ, Knoester B, Winters JC, Dijkstra PU (2008) Assessment of the cervical range of motion over time, differences between results of the flock of birds and the EDI-320: a comparison between an electromagnetic tracking system and an electronic inclinometer. Man Ther 13:450–455. doi:10.1016/j.math.2007.05.012

    Article  PubMed  Google Scholar 

  5. Assink N, Bergman GJ, Knoester B, Winters JC, Dijkstra PU, Postema K (2005) Interobserver reliability of neck-mobility measurement by means of the flock-of-birds electromagnetic tracking system. J Manipulative Physiol Ther 28:408–413. doi:10.1016/j.jmpt.2005.06.009

    Article  PubMed  Google Scholar 

  6. Bell KM, Frazier EC, Shively CM, Hartman RA, Ulibarri JC, Lee JY, Kang JD, Donaldson WF 3rd (2008) Assessing range of motion to evaluate the adverse effects of ill-fitting cervical orthoses. Spine J

  7. Bergman GJ, Knoester B, Assink N, Dijkstra PU, Winters JC (2005) Variation in the cervical range of motion over time measured by the “flock of birds” electromagnetic tracking system. Spine 30:650–654. doi:10.1097/01.brs.0000155414.03723.3d

    Article  PubMed  Google Scholar 

  8. Brown RH, Burstein AH, Nash CL, Schock CC (1976) Spinal analysis using a three dimensional radiographic technique. J Biomech 9:355–365. doi:10.1016/0021-9290(76)90113-5

    Article  PubMed  CAS  Google Scholar 

  9. Buck CA, Dameron FB, Dow MJ, Skowlund HV (1959) Study of normal range of motion in the neck utilizing a bubble goniometer. Arch Phys Med Rehabil 40:390–392

    PubMed  CAS  Google Scholar 

  10. Capuano-Pucci D, Rheault W, Aukai J, Bracke M, Day R, Pastrick M (1991) Intratester and intertester reliability of the cervical range of motion device. Arch Phys Med Rehabil 72:338–340

    PubMed  CAS  Google Scholar 

  11. Chen J, Solinger AB, Poncet JF, Lantz CA (1999) Meta-analysis of normative cervical motion. Spine 24:1571–1578. doi:10.1097/00007632-199908010-00011

    Article  PubMed  CAS  Google Scholar 

  12. Dvorak J, Antinnes JA, Panjabi M, Loustalot D, Bonomo M (1992) Age and gender related normal motion of the cervical spine. Spine 17:S393–S398. doi:10.1097/00007632-199210001-00009

    Article  PubMed  CAS  Google Scholar 

  13. Dvorak J, Hayek J, Zehnder R (1987) CT-functional diagnostics of the rotatory instability of the upper cervical spine. Part 2. An evaluation on healthy adults and patients with suspected instability. Spine 12:726–731. doi:10.1097/00007632-198710000-00002

    Article  PubMed  CAS  Google Scholar 

  14. Dvorak J, Panjabi M, Gerber M, Wichmann W (1987) CT-functional diagnostics of the rotatory instability of upper cervical spine. 1. An experimental study on cadavers. Spine 12:197–205

    Article  PubMed  CAS  Google Scholar 

  15. Fielding JW (1957) Cineroentgenography of the normal cervical spine. J Bone Joint Surg Am 39-A:1280–1288

    PubMed  CAS  Google Scholar 

  16. Fisher SV, Bowar JF, Awad EA, Gullickson G Jr (1977) Cervical orthoses effect on cervical spine motion: roentgenographic and goniometric method of study. Arch Phys Med Rehabil 58:109–115

    PubMed  CAS  Google Scholar 

  17. Hof AL, Koerhuis CL, Winters JC (2001) ‘Coupled motions’ in cervical spine rotation can be misleading Comment on V. Feipel, B. Rondelet, J.-P. Le Pallec and M. Rooze. Normal global motion of the cervical spine: an electrogoniometric study. Clin. Biomechanics 1999; 14: 462–470. Clin Biomech (Bristol, Avon) 16:455–458. doi:10.1016/S0268-0033(01)00012-2

  18. Jones MD, Bard G (1966) Cineradiography of the unstable cervical spine. Am J Phys Med 45:291–295

    PubMed  CAS  Google Scholar 

  19. Jordan K (2000) Assessment of published reliability studies for cervical spine range-of-motion measurement tools. J Manipulative Physiol Ther 23:180–195. doi:10.1016/S0161-4754(00)90248-3

    Article  PubMed  CAS  Google Scholar 

  20. Kadir N, Grayson MF, Goldberg AA, Swain MC (1981) A new goniometer. Rheumatol Rehabil 20:219–226

    Article  PubMed  CAS  Google Scholar 

  21. Koerhuis CL, Winters JC, van der Helm FC, Hof AL (2003) Neck mobility measurement by means of the ‘flock of birds’ electromagnetic tracking system. Clin Biomech (Bristol, Avon) 18:14–18. doi:10.1016/S0268-0033(02)00146-8

    Article  CAS  Google Scholar 

  22. Lysell E (1969) Motion in the cervical spine. An experimental study on autopsy specimens. Acta Orthop Scand Suppl 123:121

    Google Scholar 

  23. Mayer T, Brady S, Bovasso E, Pope P, Gatchel RJ (1993) Noninvasive measurement of cervical tri-planar motion in normal subjects. Spine 18:2191–2195

    PubMed  CAS  Google Scholar 

  24. Nilsson N, Hartvigsen J, Christensen HW (1996) Normal ranges of passive cervical motion for women and men 20–60 years old. J Manipulative Physiol Ther 19:306–309

    PubMed  CAS  Google Scholar 

  25. Ordway NR, Seymour R, Donelson RG, Hojnowski L, Lee E, Edwards WT (1997) Cervical sagittal range-of-motion analysis using three methods. Cervical range-of-motion device, 3space, and radiography. Spine 22:501–508. doi:10.1097/00007632-199703010-00007

    Article  PubMed  CAS  Google Scholar 

  26. Penning L, Wilmink JT (1987) Rotation of the cervical spine. A CT study in normal subjects. Spine 12:732–738. doi:10.1097/00007632-198710000-00003

    Article  PubMed  CAS  Google Scholar 

  27. Rheault W, Albright B, Byers C, Franta M, Johnson A, Skowronek M, Dougherty J (1992) Intertester reliability of the cervical range of motion device. J Orthop Sports Phys Ther 15:147–150

    PubMed  CAS  Google Scholar 

  28. Tucci SM, Hicks JE, Gross EG, Campbell W, Danoff J (1986) Cervical motion assessment: a new, simple and accurate method. Arch Phys Med Rehabil 67:225–230

    PubMed  CAS  Google Scholar 

  29. Youdas JW, Carey JR, Garrett TR (1991) Reliability of measurements of cervical spine range of motion–comparison of three methods. Phys Ther 71:98–104 discussion 105–106

    PubMed  CAS  Google Scholar 

  30. Youdas JW, Garrett TR, Suman VJ, Bogard CL, Hallman HO, Carey JR (1992) Normal range of motion of the cervical spine: an initial goniometric study. Phys Ther 72:770–780

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis D. Gelalis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelalis, I.D., DeFrate, L.E., Stafilas, K.S. et al. Three-dimensional analysis of cervical spine motion: reliability of a computer assisted magnetic tracking device compared to inclinometer. Eur Spine J 18, 276–281 (2009). https://doi.org/10.1007/s00586-008-0853-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-008-0853-0

Keywords

Navigation