Skip to main content

Advertisement

Log in

Spinal stenosis: assessment of motor function, VEGF expression and angiogenesis in an experimental model in the rat

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Reduction of blood flow in compressed nerve roots is considered as one important mechanism of induction of neurogenic intermittent claudication in lumbar spinal canal stenosis. Vascular endothelial growth factor (VEGF) is a potent stimulator of angiogenesis, and is increased in expression in hypoxic conditions. The objective of this study was to examine if cauda equina compression affects motor function and induces expression of VEGF and angiogenesis. The cauda equina was compressed by placing a piece of silicone rubber into the L5 epidural space. Walking duration was examined by rota-rod testing. The compressed parts of the cauda equina and L5 dorsal root ganglion (DRG) were removed at 3, 7, 14, or 28 days after surgery, and processed for immunohistochemistry for VEGF and Factor VIII (marker for vascular endothelial cells). Numbers of VEGF-immunoreactive (IR) cells and vascular density were examined. Walking duration was decreased after induction of cauda equina compression. The number of VEGF-IR cells in the cauda equina and DRG was significantly increased at 3, 14, and 28 days after cauda equina compression, compared with sham-operated rats (P < 0.05). Vascular density in the cauda equina was not increased at any of the time points examined. Cauda equina compression decreased walking duration, and induced VEGF expression in nerve roots and DRG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baker AR, Collins TA, Poter RW et al (1995) Laser doppler study of procaine cauda equina blood flow. The effect of electrical stimulation of the rootlets during single and double site, low pressure compression of the cauda equina. Spine 20:660–664

    Article  PubMed  CAS  Google Scholar 

  2. Banai S, Chandra M, Lazarovici et al (1994) Upregulation of vascular endothelial growth factor expression induced by myocardial ischemia: implication for coronary angiogenesis. Cardiovasc Res 28:1176–1179

    Article  PubMed  CAS  Google Scholar 

  3. Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25

    Article  PubMed  CAS  Google Scholar 

  4. Hayashi T, Abe K, Suzuki H et al (1997) Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke 28:2039–2044

    PubMed  CAS  Google Scholar 

  5. Hayashi T, Sakurai M, Abe K et al (1999) Expression of angiogenic factor in rabbit spinal cord after transient ischemia. Neuropathol Appl Neurobiol 25:63–71

    Article  PubMed  CAS  Google Scholar 

  6. Jespersen SM, Hansen ES, Hoy K et al (1995) Two-level spinal stenosis in minipig. Hemodynamic effect of exercise. Spine 20:2765–2773

    Article  PubMed  CAS  Google Scholar 

  7. Jin K, Zhu Y, Sun Y et al (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 99:11946–11950

    Article  PubMed  CAS  Google Scholar 

  8. Kikuchi S, Konno S, Kayama S et al (1996) Increased resistance to acute compression injury in chronically compressed spinal nerve roots: an experimental study. Spine 21:2544–2550

    Article  PubMed  CAS  Google Scholar 

  9. Konno S, Arai I, Otani K et al (2001) Effects of beraprost sodium on canine cauda equina function and blood flow using a chronic spinal cord compression model. J Spinal Disord 14:336–338

    Article  PubMed  CAS  Google Scholar 

  10. Kovacs Z, Ikezaki K, Samoto K et al (1996) VEGF and flt: expression time kinetics in rat brain infarction. Stroke 27:1865–1873

    PubMed  CAS  Google Scholar 

  11. Matsunaga T, Warltier DC, Tessmer J et al (2003) Expression of VEGF, Angiopoietins-1 and -2 during ischemia-induced coronary angiogenesis. Am J Physiol Heart Circ 285:H352–H358

    CAS  Google Scholar 

  12. Ogunshola OO, Antic A, Donoghue MJ et al (2002) Paracrine and Autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. J Biol Chem 277:11410–11415

    Article  PubMed  CAS  Google Scholar 

  13. Olmarker K, Rydevik B, Holm S et al (1989) Effects of experimental graded compression on blood flow in spinal nerve roots. A vital microscopic study on the porcine cauda equina. J Orthop Res 7:817–823

    Article  PubMed  CAS  Google Scholar 

  14. Ooi Y, Mita F, Satoh Y (1990) Myeloscopic study on lumbar spinal canal stenosis with special reference to intermittent claudication. Spine 15:544–549

    Article  PubMed  CAS  Google Scholar 

  15. Otani K, Kayama S, Mao GP et al (1997) Tolerance to acute compression injury and recovery of nerve function in chronically compressed spinal nerve root: experimental study. J Orthop Sci 2:266–270

    Article  Google Scholar 

  16. Otani K, Kikuchi S, Konno S et al (2001) Blood flow measurement in experimental chronic cauda equina compression in dogs: changes in blood flow at various conditions. J Spinal Disord 14:343–346

    Article  PubMed  CAS  Google Scholar 

  17. Pola R, Gaetani E, Flex A et al (2003) Peripheral nerve ischemia: apolipoprotein E deficiency results in impaired functional recovery and reduction of associated intraneural angiogenic response. Exp Neurol 184:264–273

    Article  PubMed  CAS  Google Scholar 

  18. Sekiguchi M, Kikuchi S, Myers RR (2004) Experimental spinal stenosis. Relationship between degree of cauda equina compression, neuropathology, and pain. Spine 29:1105–1111

    Article  PubMed  Google Scholar 

  19. Shweiki D, Itin D, Soffer D et al (1992) Vascular endothelial growth factor induced by hypoxia may mediate Hypoxia-initiated angiogenesis. Nature 359:843–845

    Article  PubMed  CAS  Google Scholar 

  20. Skold M, Cullheim S, Hammarberg H et al (2000) Induction of VEGF and VEGF receptors in the spinal cord after mechanical spinal injury and prostaglandin administration. Eur J Neurosci 12:3675:3686

    Article  PubMed  CAS  Google Scholar 

  21. Sondell M, Lundborg G, Kanje M (1999) Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and schwann cell proliferation in the peripheral nervous system. J Neurosci 19:5731–5740

    PubMed  CAS  Google Scholar 

  22. Sondell M, Sundler F, Kanje M (2000) Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur J Neurosci 12:4243–4254

    Article  PubMed  CAS  Google Scholar 

  23. Takahashi K, Olmarker K, Holm S et al (1993) Double-level cauda equina compression: an experimental study with continuous monitoring of intraneural blood flow in the porcine cauda equina. J Orthop Res 11:104–109

    Article  PubMed  CAS  Google Scholar 

  24. Takahashi N, Konno S, Kikuchi S (2003) Histologic and functional study on cauda equina adhesion induced by multiple level laminectomy. Spine 28:4–8

    Article  PubMed  Google Scholar 

  25. Takenobu K, Katsube N, Marsala M et al (2001) Model of neuropathic intermittent claudication in the rat: methodology and application. J Neursci Meth 104:191–198

    Article  CAS  Google Scholar 

  26. Widenfalk J, Lipson A, Jubran M et al (2003) Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neurosci 120:951–960

    Article  CAS  Google Scholar 

  27. Yamaguchi K, Murakami M, Takahashi K et al (1999) Behavioral and morphologic studies of the chronically compressed cauda equina: experimental model of lumbar spinal stenosis in the rats. Spine 9:845–851

    Article  Google Scholar 

Download references

Acknowledgments

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article. The authors thank Kenji Ono, Kazuo Sasaki and Satosi Sato for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyuki Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, K., Konno, Si., Sekiguchi, M. et al. Spinal stenosis: assessment of motor function, VEGF expression and angiogenesis in an experimental model in the rat. Eur Spine J 16, 1913–1918 (2007). https://doi.org/10.1007/s00586-007-0394-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-007-0394-y

Keywords

Navigation