Skip to main content

Advertisement

Log in

The implantation of non-cell-based materials to prevent the recurrent disc herniation: an in vivo porcine model using quantitative discomanometry examination

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Recurrent disc herniation is frequently observed due to leakage of nucleus pulposus through injured anulus fibrosus. There is no effective treatment to prevent recurrent disc herniation yet. In this study, we proposed to implant non-cell-based materials into the porcine disc to stimulate the growth of fibrous tissue and thereby increase the disc functional integrity. The disc herniation was simulated by anular punctures using the spinal needles. Four clinically used implantation materials, i.e., gelfoam, platinum coil, bone cement and tissue glue, were delivered into the discs via percutaneous spinal needles. Two months after the surgery, the swine were killed. The degree of disc integrity of intact, naturally healed and implanted discs, was examined by quantitative discomanometry apparatus. We found the disc injury could not recover after 2 months of healing, and the disc implantation affected the degree of disc integrity. The disc integrity of gelfoam-implanted discs was better than that of coil-, bone cement-, and glue-implanted discs. The implantation of non-cell-based material was proved to be a potentially clinically applicable method to recover the integrity of injured discs and to prevent recurrent disc herniation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. An HS, Takegami K, Kamada H, Nguyen CM, Thonar EJ, Singh K, Andersson GB, Masuda K (2005) Intradiscal administration of osteogenic protein-1 increases intervertebral disc height and proteoglycan content in the nucleus pulposus in normal adolescent rabbits. Spine 30:25–31; discussion 31–32

    Google Scholar 

  2. An HS, Thonar EJ, Masuda K (2003) Biological repair of intervertebral disc. Spine 28:S86–S92

    Article  PubMed  Google Scholar 

  3. Aota Y, An HS, Homandberg G, Thonar EJ, Andersson GB, Pichika R, Masuda K (2005) Differential effects of fibronectin fragment on proteoglycan metabolism by intervertebral disc cells: a comparison with articular chondrocytes. Spine 30:722–728

    Article  PubMed  Google Scholar 

  4. Forseth M, O’Grady K, Toriumi DM (1992) The current status of cyanoacrylate and fibrin tissue adhesives. J Long Term Eff Med Implants 2:221–233

    PubMed  CAS  Google Scholar 

  5. Fye MA, Southern EP, Panjabi MM, Cholewicki J (1998) Quantitative discomanometry: technique and reproducibility in vitro. J Spinal Disord 11:335–340

    Article  PubMed  CAS  Google Scholar 

  6. Gaston P, Marshall RW (2003) Survival analysis is a better estimate of recurrent disc herniation. J Bone Joint Surg Br 85:535–537

    Article  PubMed  CAS  Google Scholar 

  7. Gosain AK, Lyon VB (2002) The current status of tissue glues: part II. For adhesion of soft tissues. Plast Reconstr Surg 110:1581–1584

    Article  PubMed  Google Scholar 

  8. Gruber HE, Johnson TL, Leslie K, Ingram JA, Martin D, Hoelscher G, Banks D, Phieffer L, Coldham G, Hanley EN Jr (2002) Autologous intervertebral disc cell implantation: a model using Psammomys obesus, the sand rat. Spine 27:1626–1633

    Article  PubMed  Google Scholar 

  9. Hamadouche M, Sedel L (2000) Ceramics in orthopaedics. J Bone Joint Surg Br 82:1095–1099

    Article  PubMed  CAS  Google Scholar 

  10. Hirayama J, Yamagata M, Ogata S, Shimizu K, Ikeda Y, Takahashi K (2006) Relationship between low-back pain, muscle spasm and pressure pain thresholds in patients with lumbar disc herniation. Eur Spine J 15:41–47

    Article  PubMed  Google Scholar 

  11. Hitchon PW, Eichholz K, Barry C, Rubenbauer P, Ingalhalikar A, Nakamura S, Follett K, Lim TH, Torner J (2005) Biomechanical studies of an artificial disc implant in the human cadaveric spine. J Neurosurg Spine 2:339–343

    PubMed  Google Scholar 

  12. Iencean SM (2000) Lumbar intervertebral disc herniation following experimental intradiscal pressure increase. Acta Neurochir (Wien) 142:669–676

    Article  CAS  Google Scholar 

  13. Joshi A, Fussell G, Thomas J, Hsuan A, Lowman A, Karduna A, Vresilovic E, Marcolongo M (2006) Functional compressive mechanics of a PVA/PVP nucleus pulposus replacement. Biomaterials 27:176–184

    Article  PubMed  CAS  Google Scholar 

  14. Joshi A, Mehta S, Vresilovic E, Karduna A, Marcolongo M (2005) Nucleus implant parameters significantly change the compressive stiffness of the human lumbar intervertebral disc. J Biomech Eng 127:536–540

    Article  PubMed  Google Scholar 

  15. Kallmes DF, Helm GA, Hudson SB, Altes TA, Do HM, Mandell JW, Cloft HJ (1999) Histologic evaluation of platinum coil embolization in an aneurysm model in rabbits. Radiology 213:217–222

    PubMed  CAS  Google Scholar 

  16. Kayanja MM, Ferrara LA, Lieberman IH (2004) Distribution of anterior cortical shear strain after a thoracic wedge compression fracture. Spine J 4:76–87

    Article  PubMed  Google Scholar 

  17. Klara PM, Ray CD (2002) Artificial nucleus replacement: clinical experience. Spine 27:1374–1377

    Article  PubMed  Google Scholar 

  18. Kotani Y, Cunningham BW, Abumi K, Dmitriev AE, Ito M, Hu N, Shikinami Y, McAfee PC, Minami A (2005) Multidirectional flexibility analysis of cervical artificial disc reconstruction: in vitro human cadaveric spine model. J Neurosurg Spine 2:188–194

    Article  PubMed  Google Scholar 

  19. Lin EP, Ekholm S, Hiwatashi A, Westesson PL (2004) Vertebroplasty: cement leakage into the disc increases the risk of new fracture of adjacent vertebral body. AJNR Am J Neuroradiol 25:175–180

    PubMed  Google Scholar 

  20. Mannion AF, Dvorak J, Muntener M, Grob D (2005) A prospective study of the interrelationship between subjective and objective measures of disability before and 2 months after lumbar decompression surgery for disc herniation. Eur Spine J 14:454–465

    Article  PubMed  Google Scholar 

  21. Masuda K, Oegema TR Jr, An HS (2004) Growth factors and treatment of intervertebral disc degeneration. Spine 29:2757–2769

    Article  PubMed  Google Scholar 

  22. Maurer P, Bekes K, Gernhardt CR, Schaller HG, Schubert J (2004) Comparison of the bond strength of selected adhesive dental systems to cortical bone under in vitro conditions. Int J Oral Maxillofac Surg 33:377–381

    Article  PubMed  CAS  Google Scholar 

  23. Mizuno H, Roy AK, Zaporojan V, Vacanti CA, Ueda M, Bonassar LJ (2005) Biomechanical and biochemical characterization of composite tissue-engineered intervertebral discs. Biomaterials 27:362–370

    Article  PubMed  CAS  Google Scholar 

  24. Negvesky GJ, Butrus SI, Abifarah HA, Lee YC, Yalkowsky SH (2000) Ocular gelfoam disc-applicator for pupillary dilation in humans. J Ocul Pharmacol Ther 16:311–315

    Article  PubMed  CAS  Google Scholar 

  25. Panjabi M, Brown M, Lindahl S, Irstam L, Hermens M (1988) Intrinsic disc pressure as a measure of integrity of the lumbar spine. Spine 13:913–917

    Article  PubMed  CAS  Google Scholar 

  26. Saruhashi Y, Mori K, Katsuura A, Takahashi S, Matsusue Y, Hukuda S (2004) Evaluation of standard nucleotomy for lumbar disc herniation using the Love method: results of follow-up studies after more than 10 years. Eur Spine J 13:626–630

    Article  PubMed  Google Scholar 

  27. Schechtman H, Robertson PA, Broom ND (2006) Failure strength of the bovine caudal disc under internal hydrostatic pressure. J Biomech 39:1401–1409

    Article  PubMed  Google Scholar 

  28. Solberg TK, Nygaard OP, Sjaavik K, Hofoss D, Ingebrigtsen T (2005) The risk of “getting worse” after lumbar microdiscectomy. Eur Spine J 14:49–54

    Article  PubMed  Google Scholar 

  29. Songer MN, Ghosh L, Spencer DL (1990) Effects of sodium hyaluronate on peridural fibrosis after lumbar laminotomy and discectomy. Spine 15:550–554

    Article  PubMed  CAS  Google Scholar 

  30. Southern EP, Fye MA, Panjabi MM, Patel TC, Cholewicki J (2000) Disc degeneration: a human cadaveric study correlating magnetic resonance imaging and quantitative discomanometry. Spine 25:2171–2175

    Article  PubMed  CAS  Google Scholar 

  31. Takegami K, An HS, Kumano F, Chiba K, Thonar EJ, Singh K, Masuda K (2005) Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced in vitro chemonucleolysis. Spine J 5:231–238

    Article  PubMed  Google Scholar 

  32. Tenjin H, Fushiki S, Nakahara Y, Masaki H, Matsuo T, Johnson CM, Ueda S (1995) Effect of Guglielmi detachable coils on experimental carotid artery aneurysms in primates. Stroke 26:2075–2080

    PubMed  CAS  Google Scholar 

  33. Trail IA, Powell ES, Noble J, Crank S (1992) The role of an adhesive (Histoacryl) in tendon repair. J Hand Surg [Br] 17:544–549

    Article  CAS  Google Scholar 

  34. Uzvolgyi E, Katona A, Kertai P (1990) Tumor cell implantation with the use of Gelaspon gelatin sponge disc. Cancer Lett 51:1–5

    Article  PubMed  CAS  Google Scholar 

  35. Veloudios A, Kratky V, Heathcote JG, Lee M, Hurwitz JJ, Kazdan MS (1996) Cyanoacrylate tissue adhesive in blepharoplasty. Ophthal Plast Reconstr Surg 12:89–97

    Article  PubMed  CAS  Google Scholar 

  36. Wang DH, Makaroun M, Webster MW, Vorp DA (2001) Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J Biomech Eng 123:536–539

    Article  PubMed  CAS  Google Scholar 

  37. Wang JL, Panjabi MM, Kato Y, Nguyen C (2002) Radiography cannot examine disc injuries secondary to burst fracture: quantitative discomanometry validation. Spine 27:235–240

    Article  PubMed  Google Scholar 

  38. Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24:755–762

    Article  PubMed  CAS  Google Scholar 

  39. Wu MC, Hsiao CT (2003) Breeds of the laboratory swine in ISO certified swine farm and their characteristics. In: Chinese Society of Laboratory Animal Sciences Annual Meeting, Taipei

Download references

Acknowledgment

This study was supported by NTU Hospital, NTU Animal Hospital, the National Science Council, Taiwan (NSC 92-2320-B-002-091, NSC 94-2320-B-002-035), and National Health Research Institute, Taiwan (NHRI-EX94-9425EI). The use of animals was approved by the Animal Care and Use Committee, National Taiwan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaw-Lin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YH., Kuo, TF. & Wang, JL. The implantation of non-cell-based materials to prevent the recurrent disc herniation: an in vivo porcine model using quantitative discomanometry examination. Eur Spine J 16, 1021–1027 (2007). https://doi.org/10.1007/s00586-007-0306-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-007-0306-1

Keywords

Navigation