Skip to main content
Log in

Evaluation of the 96/4 PLDLLA polymer resorbable lumbar interbody cage in a long term animal model

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Arthrodesis using interbody cages has demonstrated high fusion rates. However, permanent cages are exposed to stress-shielding, corrosion, and may require explanation when necessary. Polylactic acid (PLA) bioresorbable cages are developed for avoiding these problems, but significant tissue reaction has been reported with 70/30 PLDLLA in some preclinical animal studies. The objective was to evaluate 96/4 PLDLLA cages in a sheep model over 3 years. Sixteen sheeps underwent one level anterior lumbar interbody fusion using 96/4 PLDLLA cages, filled and surrounded with cancellous bone graft from the iliac crest. Six groups of three animals were killed after 3, 6, 9, 12, 24, and 36 months. Harvested lumbar spine had radiographic, MRI, and CT evaluation and histological analysis. Histological results: cage swelling and slight signs of fragmentation associated to fibrocartilaginous tissue apposition at 3 months; bone remodeling around the cage with direct apposition of the mineralization front at 6 months; active cage degradation and complete fusion around the cage at 9 months; cage fragmentation and partial replacement by bone tissue at 12 months; bone bridges in and around the cage at 24 months; full resorption and intervertebral fusion at 36 months. Radiological results: partial arthrodesis at 3 months; definite peripheral arthrodesis at 6 months; similar aspect at 9 months; significant cage resorption at 12 months; definite inner and outer fusion at 24 months; complete cage resorption and calcification at the location of the cage at 36 months confirmed histological observations. Radiographic, CT scan, MRI, and histological data were consistent for showing progressive resorption of 96/4 PLDLLA, interbody fusion, and bone remodeling, with no significant signs of local intolerance reaction. These results are promising and suggest further development of 96/4 PLDLLA cages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. AFNOR (2005) [Biological evaluation of medical devices - part 6: local effects after implantation]. J Off Repub Fr 70

  2. Agazzi S, Reverdin A, May D (1999) Posterior lumbar interbody fusion with cages: an independent review of 71 cases. J Neurosurg 91:186–192

    PubMed  CAS  Google Scholar 

  3. Alexander JT, Branch CL Jr, Subach BR et al (2002a) Applications of a resorbable interbody spacer in posterior lumbar interbody fusion. J Neurosurg 97:468–472

    CAS  Google Scholar 

  4. Alexander JT, Branch CL Jr, Subach BR et al (2002b) Applications of a resorbable interbody spacer via a posterior lumbar interbody fusion technique. Orthopedics 25:s1185–s1189

    Google Scholar 

  5. An YH, Woolf SK, Friedman RJ (2000) Pre-clinical in vivo evaluation of orthopaedic bioabsorbable devices. Biomaterials 21:2635–2652

    Article  PubMed  CAS  Google Scholar 

  6. Bergsma JE, de Bruijn WC, Rozema FR et al (1995a) Late degradation tissue response to poly(l-lactide) bone plates and screws. Biomaterials 16:25–31

    Article  CAS  Google Scholar 

  7. Bergsma JE, Rozema FR, Bos RR et al (1995b) In vivo degradation and biocompatibility study of in vitro pre-degraded as-polymerized polyactide particles. Biomaterials 16:267–274

    Article  CAS  Google Scholar 

  8. Bostman O, Pihlajamaki H (2000) Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials 21:2615–2621

    Article  PubMed  CAS  Google Scholar 

  9. Brantigan JW, Steffee AD (1993) A carbon fiber implant to aid interbody lumbar fusion. Two-year clinical results in the first 26 patients. Spine 18:2106–2107

    Article  PubMed  CAS  Google Scholar 

  10. Casteleyn PP, Handelberg F, Haentjens P (1992) Biodegradable rods versus Kirschner wire fixation of wrist fractures. A randomised trial. J Bone Joint Surg Br 74:858–861

    PubMed  CAS  Google Scholar 

  11. Chen C, Chueh J, Tseng H et al (2003) Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 24:1167–1173

    Article  PubMed  CAS  Google Scholar 

  12. Ciccone WJ 2nd, Motz C, Bentley C et al (2001) Bioabsorbable implants in orthopaedics: new developments and clinical applications. J Am Acad Orthop Surg 9:280–288

    PubMed  Google Scholar 

  13. de Medinaceli L, al Khoury R, Merle M (1995) Large amounts of polylactic acid in contact with divided nerve sheaths have no adverse effects on regeneration. J Reconstr Microsurg 11:43–49

    Article  PubMed  Google Scholar 

  14. Donath K, Breuner G (1982) A method for the study of undecalcified bones and teeth with attached soft tissues. The Sage–Schliff (sawing and grinding) technique. J Oral Pathol 11:318–326

    Article  PubMed  CAS  Google Scholar 

  15. Eindorf T, Pflugmacher R, Koch C et al (2005) Spinal fusion with bioresorbable cages—severe degradation effects. Eur Spine J 14:S20

    Google Scholar 

  16. Gogolewski S (2000) Bioresorbable polymers in trauma and bone surgery. Injury 31(Suppl 4):28–32

    Article  PubMed  Google Scholar 

  17. Hoffmann R, Krettek C, Hetkamper A et al (1992) [Osteosynthesis of distal radius fractures with biodegradable fracture rods. Results of two years follow-up]. Unfallchirurg 95:99–105

    PubMed  CAS  Google Scholar 

  18. Hollinger JO, Battistone GC (1986) Biodegradable bone repair materials. Synthetic polymers and ceramics. Clin Orthop 290–305

  19. Kanayama M, Cunningham BW, Haggerty CJ et al (2000) In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices. J Neurosurg 93:259–265

    PubMed  CAS  Google Scholar 

  20. Kandziora F, Pflugmacher R, Scholz M et al (2004) Bioabsorbable interbody cages in a sheep cervical spine fusion model. Spine 29:1845–1855

    Article  PubMed  Google Scholar 

  21. Kuslich SD, Danielson G, Dowdle JD et al (2000) Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage. Spine 25:2656–2662

    Article  PubMed  CAS  Google Scholar 

  22. Lundgren D, Nyman S, Mathisen T et al (1992) Guided bone regeneration of cranial defects, using biodegradable barriers: an experimental pilot study in the rabbit. J Craniomaxillofac Surg 20:257–260

    PubMed  CAS  Google Scholar 

  23. Mainil-Varlet P, Rahn B, Gogolewski S (1997) Long-term in vivo degradation and bone reaction to various polylactides. 1. One-year results. Biomaterials 18:257–266

    Article  PubMed  CAS  Google Scholar 

  24. McAfee PC (1999a) Interbody fusion cages in reconstructive operations on the spine. J Bone Joint Surg Am 81:859–880

    CAS  Google Scholar 

  25. McAfee PC, Cunningham BW, Lee GA et al (1999b) Revision strategies for salvaging or improving failed cylindrical cages. Spine 24:2147–2153

    Article  CAS  Google Scholar 

  26. Merloz P, Minfelde R, Schelp C et al (1995) [In vitro study of the properties of bioresorbable lactic acid polymer materials]. Rev Chir Orthop Reparatrice Appar Mot 81:433–444

    PubMed  CAS  Google Scholar 

  27. Onesti ST, Ashkenazi E (1998) The Ray threaded fusion cage for posterior lumbar interbody fusion. Neurosurgery 42:200–204

    Article  PubMed  CAS  Google Scholar 

  28. Pihlajamaki H, Kinnunen J, Bostman O (1997) In vivo monitoring of the degradation process of bioresorbable polymeric implants using magnetic resonance imaging. Biomaterials 18:1311–1315

    Article  PubMed  CAS  Google Scholar 

  29. Pistner H, Gutwald R, Ordung R et al (1993) Poly(l-lactide): a long-term degradation study in vivo. I. Biological results. Biomaterials 14:671–677

    Article  PubMed  CAS  Google Scholar 

  30. Ray CD (1997) Threaded titanium cages for lumbar interbody fusions. Spine 22:667–679

    Article  PubMed  CAS  Google Scholar 

  31. Regan JJ, Yuan H, McAfee PC (1999) Laparoscopic fusion of the lumbar spine: minimally invasive spine surgery. A prospective multicenter study evaluating open and laparoscopic lumbar fusion. Spine 24:402–411

    Article  PubMed  CAS  Google Scholar 

  32. Rish BL (1989) A critique of posterior lumbar interbody fusion: 12 years’ experience with 250 patients. Surg Neurol 31:281–289

    Article  PubMed  CAS  Google Scholar 

  33. Rokkanen PU, Bostman O, Hirvensalo E et al (2000) Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials 21:2607–2613

    Article  PubMed  CAS  Google Scholar 

  34. Schwach G, Coudane J, Engel R et al (2002) Influence of polymerization conditions on the hydrolytic degradation of poly(dl-lactide) polymerized in the presence of stannous octoate or zinc-metal. Biomaterials 23:993–1002

    Article  PubMed  CAS  Google Scholar 

  35. Schwach G, Vert M (1999) In vitro and in vivo degradation of lactic acid-based interference screws used in cruciate ligament reconstruction. Int J Biol Macromol 25:283–291

    Article  PubMed  CAS  Google Scholar 

  36. Shah RR, Mohammed S, Saifuddin A et al (2003) Comparison of plain radiographs with CT scan to evaluate interbody fusion following the use of titanium interbody cages and transpedicular instrumentation. Eur Spine J 12:378–385

    Article  PubMed  Google Scholar 

  37. Smit TH, Muller R, Van Dijk M et al (2003) Changes in bone architecture during spinal fusion: three years follow-up and the role of cage stiffness. Spine 28:1802–1808

    Article  PubMed  Google Scholar 

  38. Togawa D, Bauer TW, Brantigan JW et al (2001) Bone graft incorporation in radiographically successful human intervertebral body fusion cages. Spine 26:2744–2750

    Article  PubMed  CAS  Google Scholar 

  39. Toth JM, Estes BT, Wang M et al (2002a) Evaluation of 70/30 poly (l-lactide-co-dl-lactide) for use as a resorbable interbody fusion cage. J Neurosurg 97:423–432

    Article  CAS  Google Scholar 

  40. Toth JM, Wang M, Scifert JL et al (2002b) Evaluation of 70/30 D,L-PLa for use as a resorbable interbody fusion cage. Orthopedics 25:s1131–s1140

    Google Scholar 

  41. Tullberg T (1998) Failure of a carbon fiber implant. A case report. Spine 23:1804–1806

    Article  PubMed  CAS  Google Scholar 

  42. Tunc DC (1996) In vivo degradation and biocompatability study of in vitro pre-degraded as-polymerized polylactide particles. Biomaterials 17:2109–2112

    Article  PubMed  CAS  Google Scholar 

  43. van Dijk M, Smit TH, Burger EH et al (2002a) Bioabsorbable poly-l-lactic acid cages for lumbar interbody fusion: three-year follow-up radiographic, histologic, and histomorphometric analysis in goats. Spine 27:2706–2714

    Article  Google Scholar 

  44. van Dijk M, Smit TH, Sugihara S et al (2002b) The effect of cage stiffness on the rate of lumbar interbody fusion: an in vivo model using poly(l-lactic Acid) and titanium cages. Spine 27:682–688

    Article  Google Scholar 

  45. van Dijk M, Tunc DC, Smit TH et al (2002c) In vitro and in vivo degradation of bioabsorbable PLLA spinal fusion cages. J Biomed Mater Res 63:752–759

    Article  CAS  Google Scholar 

  46. van Dijk M, van Diest PJ, Smit TH et al (2005) Four-year follow-up of poly-l-lactic acid cages for lumbar interbody fusion in goats. J Long Term Eff Med Implants 15:125–138

    Article  PubMed  Google Scholar 

  47. Viljanen J, Kinnunen J, Bondestam S et al (1995) Bone changes after experimental osteotomies fixed with absorbable self-reinforced poly-l-lactide screws or metallic screws studied by plain radiographs, quantitative computed tomography and magnetic resonance imaging. Biomaterials 16:1353–1358

    Article  PubMed  CAS  Google Scholar 

  48. Warden WH, Friedman R, Teresi LM et al (1999) Magnetic resonance imaging of bioabsorbale polylactic acid interference screws during the first 2 years after anterior cruciate ligament reconstruction. Arthroscopy 15:474–480

    Article  PubMed  CAS  Google Scholar 

  49. Weiler A, Helling HJ, Kirch U et al (1996) Foreign-body reaction and the course of osteolysis after polyglycolide implants for fracture fixation: experimental study in sheep. J Bone Joint Surg Br 78:369–376

    PubMed  CAS  Google Scholar 

  50. Weiler A, Hoffmann RF, Stahelin AC et al (2000) Biodegradable implants in sports medicine: the biological base. Arthroscopy 16:305–321

    Article  PubMed  CAS  Google Scholar 

  51. Weiner BK, Fraser RD (1998) Spine update lumbar interbody cages. Spine 23:634–640

    Article  PubMed  CAS  Google Scholar 

  52. Wilke HJ, Kettler A, Claes LE (1997) Are sheep spines a valid biomechanical model for human spines? Spine 22:2365–2374

    Article  PubMed  CAS  Google Scholar 

  53. Wuisman PI, van Dijk M, Smit TH (2002) Resorbable cages for spinal fusion: an experimental goat model. J Neurosurg 97:433–439

    PubMed  CAS  Google Scholar 

  54. Zdeblick TA, Phillips FM (2003) Interbody cage devices. Spine 28:S2–S7

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc A. Rousseau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazennec, J.Y., Madi, A., Rousseau, M.A. et al. Evaluation of the 96/4 PLDLLA polymer resorbable lumbar interbody cage in a long term animal model. Eur Spine J 15, 1545–1553 (2006). https://doi.org/10.1007/s00586-006-0145-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-006-0145-5

Keywords

Navigation