Skip to main content
Log in

Validation of a computer analysis to determine 3-D rotations and translations of the rib cage in upright posture from three 2-D digital images

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Since thoracic cage posture affects lumbar spine coupling and loads on the spinal tissues and extremities, a scientific analysis of upright posture is needed. Common posture analyzers measure human posture as displacements from a plumb line, while the PosturePrint™ claims to measure head, rib cage, and pelvic postures as rotations and translations. In this study, it was decided to evaluate the validity of the PosturePrint™ Internet computer system’s analysis of thoracic cage postures. In a university biomechanics laboratory, photographs of a mannequin thoracic cage were obtained in different postures on a stand in front of a digital camera. For each mannequin posture, three photographs were obtained (left lateral, right lateral, and AP). The mannequin thoracic cage was placed in 68 different single and combined postures (requiring 204 photographs) in five degrees of freedom: lateral translation (Tx), lateral flexion (Rz), axial rotation (Ry), flexion–extension (Rx), and anterior–posterior translation (Tz). The PosturePrint™ system requires 13 reflective markers to be placed on the subject (mannequin) during photography and 16 additional “click-on” markers via computer mouse before a set of three photographs is analyzed by the PosturePrint™ computer system over the Internet. Errors were the differences between the positioned mannequin and the calculated positions from the computer system. Average absolute value errors were obtained by comparing the exact inputted posture to the PosturePrint™’s computed values. Mean and standard deviation of computational errors for sagittal displacements of the thoracic cage were Rx=0.3±0.1°, Tz=1.6±0.7 mm, and for frontal view displacements were Ry=1.2±1.0°, Rz=0.6±0.4°, and Tx=1.5±0.6 mm. The PosturePrint™ system is sufficiently accurate in measuring thoracic cage postures in five degrees of freedom on a mannequin indicating the need for a further study on human subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams MA, May S, Freeman BJ, Morrison HP, Dolan P (2000) Effects of backward bending on lumbar intervertebral discs. Relevance to physical therapy treatments for low back pain. Spine 25:431–437

    Article  PubMed  CAS  Google Scholar 

  2. Andersson BJG, Ortengren R, Nachemson A, Elfstrom G (1974) Lumbar disc pressure and myoelectric back muscle activity during sitting. I. Studies on an experimental chair. Scand J Rehab Med 6:104–114

    CAS  Google Scholar 

  3. Azegami H, Murachi S, Kitoh J, Ishida Y, Kawakami N, Makino M (1998) Etiology of idiopathic scoliosis. Clin Orthop Relat Res 357:229–236

    Article  PubMed  Google Scholar 

  4. Basmajian JV (1958) Electromyography of iliopsoas. Anat Rec 130:267

    Google Scholar 

  5. Basmajian JV, Bentzon JW (1954) Electromyographic study of certain muscles of the leg and foot in the standing position. Surg Gynecol Obstet 98:662–666

    PubMed  CAS  Google Scholar 

  6. Beck A, Killus J (1973) Normal posture of spine determined by mathematical and statistical methods. Aerospace Med 44:1277–1281

    PubMed  CAS  Google Scholar 

  7. den Boer WA, Anderson PG, Limbeek J, Kooijman MA (1999) Treatment of idiopathic scoliosis with side-shift therapy: an initial comparison with a brace treatment historical cohort. Eur Spine J 8:406–410

    Article  Google Scholar 

  8. Breig A (1960) Biomechanics of the central nervous system. Almqvist and Wiksell, Stockholm

    Google Scholar 

  9. Breig A (1978) Adverse mechanical tension in the central nervous system. Analysis of cause and effect. Relief by functional neurosurgery. Almqvist & Wiksell/Wiley, Stockholm/New York

    Google Scholar 

  10. Breig A (1989) Skull traction and cervical cord injury. A new approach to improved rehabilitation. Springer, Berlin Heidelberg New York

    Google Scholar 

  11. Carlsoo S (1961) The static muscle load in different work positions: an electromyographic study. Ergonomics 4:193–211

    Article  Google Scholar 

  12. Cholewicki J, Crisco JJ III, Oxland TR, Yamamoto I, Panjabi MM (1996) Effects of posture and structure on three-dimensional coupled rotations in the lumbar spine. A biomechanical analysis. Spine 21:2421–2428

    Article  PubMed  CAS  Google Scholar 

  13. Colachis SC, Strohm BR (1969) Effects of intermittent traction on separation of lumbar vertebrae. Arch phys Med Rehabil 44:251–258

    Google Scholar 

  14. During J, Goudfrooij H, Keessen W, Beeker ThW, Crowe A (1985) Toward standards for posture. Spine 10:83–87

    Article  PubMed  CAS  Google Scholar 

  15. Dvorak J, Panjabi MM, Chang DG, Theiler R, Grob D (1989) Functional radiographic diagnosis of the lumbar spine. Flexion-extension and lateral bending. Spine 16:562–571

    Google Scholar 

  16. Edwards WT, Ordway NR, Zheng Y, McCullen G, Han Z, Yuan HA (2001) Peak stresses observed in the posterior lateral anulus. Spine 26:1753–1759

    Article  PubMed  CAS  Google Scholar 

  17. Floyd WF, Silver PHS (1955) The function of the erector spinae muscles in certain movements and postures in man. J Physiol 129:184–203

    PubMed  CAS  Google Scholar 

  18. Gillan MG, Ross JC, McLean IP, Porter RW (1998) The natural history of trunk list, its associated disability and the influence of McKenzie management. Eur Spine J 7:480–483

    Article  PubMed  CAS  Google Scholar 

  19. Goto K, Tajima N, Chosa E, Totoribe K, Kuroki H, Arizumi Y, Arai T (2002) Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model. J Orthop Sci. 7(2):243–246

    Article  PubMed  Google Scholar 

  20. Hales J, Larson P, Laizzo PA (2002) Treatment of adult lumbar scoliosis with axial spinal unloading using the LTX3000 lumbar rehabilitation system. Spine 27:E71–E79

    Article  PubMed  Google Scholar 

  21. Harrison DD (1982–1997) Spinal biomechanics. USA National Library of Medicine #WE 725 4318C

  22. Harrison DE, Cailliet R, Janik TJ, Harrison DD, Troyanovich SJ, Coleman RR (1999) Lumbar Coupling During Lateral Translations of the Thoracic Cage Relative to a Fixed Pelvis. Clin Biomech 14:704–709

    Article  CAS  Google Scholar 

  23. Harrison DE, Cailliet R, Harrison DD, Janik TJ (2002) How do anterior/posterior translations of the thoracic cage affect the sagittal lumbar spine, pelvic tilt, and thoracic kyphosis? Eur Spine J 11:287–293

    Article  PubMed  Google Scholar 

  24. Hayes MA, Howard TC, Gruel CR, Kopta JA (1989) Roentgenographic evaluation of lumbar spine flexion–extension in asymptomatic individuals. Spine 14:327–331

    Article  PubMed  CAS  Google Scholar 

  25. Iqbal QM (1991) A review of the use of corrective forces in scoliosis. Saudi Med J 12:94–101

    Google Scholar 

  26. Itoi E (1991) Roentgenographic analysis of posture in spinal osteoporotics. Spine 16:750–756

    Article  PubMed  CAS  Google Scholar 

  27. Jackson RP, McManus AC (1994) Radiographic analysis of sagittal plane alignment and balance in standing volunteers and patients with low back pain matched for age, sex, and size. Spine 19:1611–1618

    Article  PubMed  CAS  Google Scholar 

  28. Joseph J, Nightingale A (1952) Electromyography of muscles of posture: leg muscles in males. J Physiol 117:484–491

    PubMed  CAS  Google Scholar 

  29. Joseph J, Nightingale A (1954) Electromyography of muscles of posture: thigh muscles in males. J Physiol 126:81–85

    PubMed  CAS  Google Scholar 

  30. Joseph J, Nightingale A (1956) Electromyography of muscles of posture: leg and thigh muscles in women, including the effects of high heels. J Physiol 132:465–468

    PubMed  CAS  Google Scholar 

  31. Joseph J, Nightingale A, Williams PL (1955) A detailed study of the electric potentials recorded over some postural muscles while relaxed and standing. J Physiol 127:617–625

    PubMed  CAS  Google Scholar 

  32. Keller TS, Harrison DE, Colloca CJ, Harrison DD, Janik TJ (2003) Prediction of osteoporotic spinal deformity. Spine 28:455–462

    Article  PubMed  Google Scholar 

  33. Keller TS, Colloca CJ, Harrison DE, Harrison DD, Janik TJ (2005) Morphological and biomechanical modeling of the thoracoc-lumbar spine: implications for the ideal spine. Spine J 5:297–309

    Article  PubMed  Google Scholar 

  34. Klausen K (1965) The form and function of the loaded human spine. Acta Physiol Scand 65:176–190

    Article  Google Scholar 

  35. Kumar K (1987) Did the modern concept of axial traction to correct scoliosis exist in prehistoric times? J Neurol Orthop Med Surg 8:309–310

    Google Scholar 

  36. Kumar K (1996) Spinal deformity and axial traction. Spine 21:653–655

    Article  PubMed  CAS  Google Scholar 

  37. Ljunggren AE, Weber H, Larson S (1984) Autotraction versus manual traction in patients with prolapsed lumbar intervertebral discs. Scand J Rehabil Med 16:117–124

    PubMed  CAS  Google Scholar 

  38. Nachemson A, Elfstrom G (1970) Intravital dynamic pressure measurements in lumbar discs. A study of common movements, maneuvers and exercises. Scand J Rehab Med Suppl 1:1–40

    CAS  Google Scholar 

  39. Panjabi MM, White AA, Brand RA (1974) A note on defining body parts configurations. J Biomech 7:385–390

    Article  PubMed  CAS  Google Scholar 

  40. Panjabi MM, Brand RA, White AA (1976) Three-dimensional flexibility and stiffness properties of the human thoracic spine. J Biomech 9:185–192

    Article  PubMed  CAS  Google Scholar 

  41. Panjabi M, Yamamoto I, Oxland T, Crisco J (1989) How does posture affect coupling in the lumbar spine. Spine 14:1002–1011

    Article  PubMed  CAS  Google Scholar 

  42. Panjabi MM, Oda T, Crisco JJ III, Dvorak J, Grob D (1993) Posture affects motion coupling patterns of the upper cervical spine. J Orthop Res 11:525–536

    Article  PubMed  CAS  Google Scholar 

  43. Pearcy MJ, Tibrewal SB (1984) Axial rotation and lateral bending in the normal lumbar spine measured by three-dimesional radiography. Spine 9:582–587

    Article  PubMed  CAS  Google Scholar 

  44. Raine S, Twomey L (1994) Attributes and qualities of human posture and their relationship to dysfunction or musculoskeletal pain. Crit Rev Phys Rehabil Med 6:409–437

    Google Scholar 

  45. Roaf R (1980) Spinal deformities, 2nd edn. Pitman Medical England, Kent

    Google Scholar 

  46. Stokes IAF, Wilder DG, Frymoyer JW, Pope MH (1981) Assessment of patients with low-back pain by biplanar radiographic measurement of intervertebral motion. Spine 6:233–239

    Article  PubMed  CAS  Google Scholar 

  47. Tekeoglu I, Adak B, Bozkurt M, Gurbuzoglu N (1998) Distraction of lumbar vertebrae in gravitational traction. Spine 23:1061–1063

    Article  PubMed  CAS  Google Scholar 

  48. Veldhuizen AG, Scholten PJM (1987) Kinematics of the scoliotic spine as related to the normal spine. Spine 12:852–858

    Article  PubMed  CAS  Google Scholar 

  49. Walmsey RP, Kimber P, Culham E (1996) The effect of initial head position on active axial rotation range of motion in two age populations. Spine 21:2435–2442

    Article  Google Scholar 

  50. Weber H, Ljunggren E, Walker L (1984) Traction therapy in patients with herniated lumbar intervertebral discs. J Oslo City Hos 34:61–70

    CAS  Google Scholar 

  51. White AA, Panjabi MM (1990) Clinical biomechanics of the spine, 2nd edn. Lippincott Co., Philadelphia, pp 53

    Google Scholar 

  52. Willems JM, Jull GA (1996) An in vivo study of the primary and coupled rotations of the thoracic spine. Clin Biomech 11:311–316

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald D. Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, D.E., Janik, T.J., Cailliet, R. et al. Validation of a computer analysis to determine 3-D rotations and translations of the rib cage in upright posture from three 2-D digital images. Eur Spine J 16, 213–218 (2007). https://doi.org/10.1007/s00586-006-0081-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-006-0081-4

Keywords

Navigation