Skip to main content
Log in

Impact of circulating erythrocyte-derived microparticles on coagulation activation in sickle cell disease

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Sickle cell disease (SCD) is characterized by a hypercoagulable state as a result of multiple factors, including chronic hemolysis and the presence of circulating cell-derived microparticles (MPs). The aim of this work was to study the impact of erythrocyte-derived circulating microparticles (glycophorin A; CD235 positive) on coagulation activation and their probable role in contribution to painful crisis in SCD patients. Peripheral blood samples of 25 SCD patients during painful crisis and in steady state were studied for the presence of erythrocyte-derived MPs using flow cytometry. Estimation of D-dimer level, as a marker of coagulation activation, was done using semiquantitative assay. Thirty-six healthy individuals, age- and sex-matched, were included as a control group. Erythrocyte-derived MPs level was significantly higher in SCD patients during painful crisis compared to control group (p = 0.02), but no statistically significant difference was found between erythrocyte-derived MPs level in SCD patients in steady state compared to controls or to SCD patients during painful crisis (p = 0.3 and 0.49, respectively). D-dimer level was higher in SCD patients both during crisis and in steady state compared to controls (p < 0.001). SCD during painful crisis is associated with increased levels of erythrocyte-derived MPs and D-dimer which may contribute to the hypercoagulable state observed in such group of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adam SS, Key NS, Greenberg CS (2009) D-dimer antigen: current concepts and future prospects. Blood 113(13):2878–2887

    Article  CAS  PubMed  Google Scholar 

  • Allan D, Limbrick AR, Thomas P, Westerman MP (1982) Release of spectrin free spicules on reoxygenation of sickled erythrocytes. Nature 295:612–613

    Article  CAS  PubMed  Google Scholar 

  • Ardoin SP, Shanahan JC, Pisetsky DS (2007) The role of microparticles in inflammation and thrombosis. Scand J Immunol 66:159–165

    Article  CAS  PubMed  Google Scholar 

  • Ataga KI, Key NS (2007) Hypercoagulability in sickle cell disease: new approaches to an old problem. Hematol (Am Soc Hematol Educ Program) 91–96

  • Austin H, Key NS, Benson JM, Lally C, Dowling NF, Whitsett C et al (2007) Sickle cell trait and the risk of venous thromboembolism among blacks. Blood 110:908–912

    Article  CAS  PubMed  Google Scholar 

  • Ballas SK, Lusardi M (2005) Hospital readmission for adult acute sickle cell painful episodes: frequency, etiology, and prognostic significance. Am J Hematol 79:17–25

    Article  PubMed  Google Scholar 

  • Berckmans RJ, Nieuwland R, Kraan MC, Schaap M, Pots D, Smeets T et al (2005) Synovial microparticles from arthritic patients modulate chemokine and cytokine release by synoviocytes. Arthritis Res Ther 7:R536–R544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bunn H, Forget BG (1986) Hemoglobin: molecular, genetic and clinical aspects. WB Saunders, Philadelphia, PA, USA

    Google Scholar 

  • Camus SM, Gausserès B, Bonnin P, Loufrani L, Grimaud L, Charue D et al (2012) Erythrocyte microparticles can induce kidney vaso-occlusions in a murine model of sickle cell disease. Blood 120(25):5050–5058

    Article  CAS  PubMed  Google Scholar 

  • Dover GJ, Platt OS (1998) Sickle Cell Disease. In: Nathan and Oski’s Hematology of infancy and childhood, DG Nathan and SH Orkin (eds), 5th Edition, WB Saunders Company Volume 1.

  • Edelstein SJ, Telford JN, Crépeau RH (1973) Structure of fibers of sickle cell hemoglobin. Proc Natl Acad Sci U S A 70:1104–1107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fontana V, Jy W, Ahn ER, Dudkiewicz P, Horstman LL, Duncan R et al (2008) Increased procoagulant cell-derived microparticles (CMP) in splenectomized patients with ITP. Thromb Res 122:599–603

    Article  CAS  PubMed  Google Scholar 

  • Horne MK, Cullinane AM, Merryman PK, Hoddeson EK (2006) The effect of red blood cells on thrombin generation. Br J Haematol 133:403–408

    Article  CAS  PubMed  Google Scholar 

  • Hugel B, Martinez MC, Kunzelmann C, Freyssinet JM (2005) Membrane microparticles: two sides of the coin. Physiology (Bethesda) 20:22–27

    Article  CAS  Google Scholar 

  • Kriebardis A, Antonelou M, Stamoulis K, Papassideri I (2012) Cell-derived microparticles in stored blood products: innocent-bystanders or effective mediators of post-transfusion reactions. Blood Transfus 10(Suppl 2):s25–s38

    PubMed Central  PubMed  Google Scholar 

  • Kuypets FA, Lewis RA, Hua M, Schott MA, Discher D, Ernst JD et al (1996) Detection of altered membrane phospholipid asymmetry in subpopulations of human red blood cells using fluorescently labeled annexin V. Blood 87:1179–1187

    Google Scholar 

  • Mann KG (1999) Biochemistry and physiology of blood coagulation. Thromb Haemost 82:165–174

    CAS  PubMed  Google Scholar 

  • Mezentsev A, Merks RM, O’Riordan E, Chen J, Mendelev N, Goligorsky MS et al (2005) Endothelial microparticles affect angiogenesis in vitro: role of oxidative stress. Am J Physiol Heart Circ Physiol 289:H1106–H1114

    Article  CAS  PubMed  Google Scholar 

  • Nébor D, Romana M, Santiago R, Vachiery N, Picot J, Broquere C et al (2013) Fetal hemoglobin and hydroxycarbamide modulate both plasma concentration and cellular origin of circulating microparticles in sickle cell anemia children. Haematologica 98(6):862–867

    Article  PubMed Central  PubMed  Google Scholar 

  • Neidlinger NA, Hirvela ER, Skinner RA (2005) Postinjury serum secretory phospholipase A2 correlates with hypoxemia and clinical status at 72 hours. J Am Coll Surg 200:173–178

    Article  PubMed  Google Scholar 

  • Neidlinger NA, Larkin SK, Bhagat A (2006) Hydrolysis of phosphatidylserine exposing red blood cells by secretory phospholipase A2 generates lysophosphatidic acid and results in vascular dysfunction. J Biol Chem 281:775–781

    Article  CAS  PubMed  Google Scholar 

  • Piccin A, Murphy WG, Smith OP (2007) Circulating microparticles: pathophysiology and clinical implications. Blood Rev 21:157–171

    Article  CAS  PubMed  Google Scholar 

  • Rubin O, Crettaz D, Canellini G, Tissot JD, Lion N (2008) Microparticles in stored red blood cells: an approach using flow cytometry and proteomic tools. Vox Sang 95:288–297

    Article  CAS  PubMed  Google Scholar 

  • Setty BN, Rao AK, Stuart MJ (2001) Thrombophilia in sickle cell disease: the red cell connection. Blood 98:3228–3233

    Article  CAS  PubMed  Google Scholar 

  • Shet AS, Aras O, Gupta K, Hass MJ, Rausch DJ, Saba N et al (2003) Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood 102:2678–2683

    Article  CAS  PubMed  Google Scholar 

  • Stuart MJ, Nagel RL (2004) Sickle-cell disease. Lancet 364:1343–1360

    Article  PubMed  Google Scholar 

  • Stuart MJ, Setty BN (2001) Hemostatic alterations in sickle cell disease: relationships to disease pathophysiology. Pediatr Pathol Mol Med 20:27–46

    Article  CAS  PubMed  Google Scholar 

  • Tait JF, Gibson D (1994) Measurement of membrane phospholipid asymmetry in normal and sickle-cell erythrocytes by means of annexin V binding. J Lab Clin Med 123:741–748

    CAS  PubMed  Google Scholar 

  • Tantawy AA, Adly AA, Ismail EA, Habeeb NM, Farouk A (2012) Circulating platelet and erythrocyte microparticles in young children and adolescents with sickle cell disease: relation to cardiovascular complications. Platelets 18(1):167–178

    Google Scholar 

  • Tissot JD, Rubin O, Canellini G (2010) Analysis and clinical relevance of microparticles from red blood cells. Curr Opin Hematol 17:571–577

    Article  PubMed  Google Scholar 

  • van Beers E, Schaap M, Berckmans R, Nieuwland R, Sturk A, van Doormaal F et al (2009) Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease. Haematologica 94(11):1513–1519

    Article  PubMed Central  PubMed  Google Scholar 

  • Westerman M, Pizzey A, Hirschman J, Cerino M, Weil- Weiner Y, Ramotar P et al (2008) Microvesicles in haemoglobinopathies offer insights into mechanisms of hypercoagulability, haemolysis and the effects of therapy. Br J Haematol 142:126–135

    Article  PubMed  Google Scholar 

  • Wun T, Paglieroni T, Rangaswami A, Franklin PH, Welborn J, Cheung A et al (1998) Platelet activation in patients with sickle cell disease. Br J Haematol 100:741–749

    Article  CAS  PubMed  Google Scholar 

  • Zwaal RF, Schroit AJ (1997) Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 89:1121–1132

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania A. Zayed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zayed, R.A., El-Ghamrawi, M., Alwakeel, H.A. et al. Impact of circulating erythrocyte-derived microparticles on coagulation activation in sickle cell disease. Comp Clin Pathol 24, 1123–1128 (2015). https://doi.org/10.1007/s00580-014-2045-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-014-2045-0

Keywords

Navigation