Skip to main content
Log in

Cauchy representation formulas for Maxwell equations in 3-dimensional domains with fractal boundaries

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

The aim of this paper is to offer a new definition of Cauchy integral associated with Maxwell equations on 3-dimensional domains with fractal boundaries. This new Cauchy integral leads to several types of integral representation formulas, including the Cauchy representation formula for time-harmonic electromagnetic fields. Our approach is based on the framework of exploiting the close and well-defined connection between the quaternionic analysis and Maxwell equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abreu-Blaya, R. Ávila-Ávila and J. Bory-Reyes. Boundary value problems for Dirac operators and Maxwell’s equations in fractal domains. Math. Meth. Appl. Sci., 38(3) (2015), 393–402.

    Article  MATH  Google Scholar 

  2. A.S. Balankin, B, Mena, J. Patiño and D. Morales. Electromagnetic fields in fractal continua. Physics Letters A, 377(10–11) (2013), 783–788.

    Article  MathSciNet  Google Scholar 

  3. S. Bernstein. Fundamental solutions of Dirac type operators. In J. Lawrynowicz (ed.): Generalizations ofComplexAnalysis. Proc. Sympos. May 30-July 1.Banach Center Publ., 37 (1994), Warsaw, 159–172.

    Google Scholar 

  4. S. Bernstein. Lippmann-Schwinger’s integral equation for quaternionicDirac operators. InternationalesKolloquiumÜberAnwendungen der Informatik undMathematik in Architektur und Bauwesen, IKM, 16, Weimar, Bauhaus-Universität (2003).

    Google Scholar 

  5. F. Brackx, R. Delanghe and F. Sommen. Clifford analysis. Research Notes in Mathematics, 76 (1982), Pitman (Advanced Publishing Program), Boston.

  6. D. Colton and R. Kress. Integral equations methods in scattering theory. N.Y.: JohnWiley & Sons (1983).

    MATH  Google Scholar 

  7. D. Colton and R. Kress. Inverse acoustic and electromagnetic scattering theory. Berlin: Springer (1992).

    Book  MATH  Google Scholar 

  8. A. Chantaverod and A.D. Seagar. Iterative solutions for electromagnetic fields at perfectly and transmissive interfaces using Clifford algebra and multidimensional Cauchy integral. IEEE Trans. Antennas and Propagation, 57(11) (2009): 3489–3499.

    Article  MathSciNet  Google Scholar 

  9. A. Chantaverod, A.D. Seagar and T. Angkaew. Calculationof electromagnetic field with integral equation based on Clifford algebra. In Proc. Progress in Electromagnetic Research Symposium (PIERS’07), Prague, Czech Republic, Aug. 27-30: 62–71 (2007).

    Google Scholar 

  10. K.J. Falconer. The geometry of fractal sets. Cambridge Tracts in Mathematics, 85 (1986). Cambridge University Press, Cambridge.

    Google Scholar 

  11. H. Federer. Geometric measure theory. Die Grundlehren der mathematischenWissenschaften, Band 153, Springer-Verlag, New York Inc., New York (1969).

    MATH  Google Scholar 

  12. G.R. Franssens. Clifford analysis formulation of electromagnetism. Proc. of the 9th WSEAS Int. Conf. on Mathematical and Computational Methods in Science and Engineering, Trinidad and Tobago, November 5-7 (2007).

    Google Scholar 

  13. G.R. Franssens. Introducing Clifford Analysis as the Natural Tool for Electromagnetic Research. PIERS Proceedings, Moscow, Russia, August 19-23 (2012).

    Google Scholar 

  14. K. Gürlebeck and W. Sprössig. Quaternionic analysis and elliptic boundary value problems. Birkhäusser, Boston (1990).

    Book  MATH  Google Scholar 

  15. K. Gürlebeck and W. Sprössig. Quaternionic and Clifford calculus for physicists and engineers. Wiley & Sons Publ. (1997).

    MATH  Google Scholar 

  16. K. Gürlebeck, M. Shapiro and W. Sprössig. On a Teodorescu transform for a class of metaharmonic functions. J. Nat. Geom., 21(1–2) (2002), 17–38.

    MathSciNet  MATH  Google Scholar 

  17. J. Harrison and A. Norton. The Gauss-Green theorem for fractal boundaries. Duke Mathematical Journal, 67(3) (1992), 575–588.

    Article  MathSciNet  MATH  Google Scholar 

  18. R.F. Harrington. Time-harmonic electromagnetic fields. New York, McGraw-Hill (1961).

    Google Scholar 

  19. D.S. Jones. Acoustic and electromagnetic waves.Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1986).

    Google Scholar 

  20. V.V. Kravchenko. Applied quaternionic analysis. Heldemann Verlag, Berlin (2003).

    MATH  Google Scholar 

  21. V.V. Kravchenko. On the relation between holomorphic biquaternionic functions and time-harmonic electromagnetic fields. Deposited inUkr INTEI, No. 2073-Uk- 92, 18 pages (1992).

    Google Scholar 

  22. V.V. Kravchenko, E. Ramírez de Arellano and M. Shapiro. On integral representations and boundary properties of spinor fields. Math. Methods Appl. Sci., 19(12) (1996), 977–989.

    Article  MathSciNet  MATH  Google Scholar 

  23. V.V. Kravchenko and M. Shapiro. Integral representations for spatial models of mathematical physics. Research Notes Math., 351 (1996), PitmanAdvanced Publi. Prog, London.

    Google Scholar 

  24. V.V. Kravchenko and M. Shapiro. Quaternionic time-harmonic Maxwell operator. J. Phys. A, 28(17) (1995), 5017–5031.

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Lanczos. The relations of the homogeneous Maxwell’s equations to the theory of functions. ArXiv:physics/0408079 [physicshist-ph].

  26. M.L. Lapidus. Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjeture. Trans. Am. Math. Sci., 325(2) (1991), 465–529.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. McIntosh and M. Mitrea. Clifford algebras and Maxwell’s equations in Lipschitz domains.Math. Methods Appl. Sci., 22 (1999), 1599–1620.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Mitrea. Boundary-value problems for Dirac Operators and Maxwell’s equations in non-smooth domains, Math. Methods Appl. Sci., 25(16-18) (2002), 1355–1369.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Mitrea. Boundary value problems and Hardy spaces associated to the Helmholtz equation in Lipschitz domains. J. Math. Anal. Appl., 202(3) (1996), 819–842.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Mockovciakovà, H.D. Storzer and A. Beyer. Direct magnetic problem solved by quaternion analog of 3-D Cauchy-Riemann system. Archiv für Elektrotechnik, 76(6) (1993), 417–421.

    Article  Google Scholar 

  31. N. Morita, N. Kumagai and J.R. Mautz. Integral equationmethods for electromagnetics. Translated from the 1987 Japanese original. Translation revised by Mautz. The Artech House Antennas and Propagation Library. Artech House, Inc., Boston, MA (1990).

    MATH  Google Scholar 

  32. V.T. Ngoc Ha. Higher order Teodorescu operators in quaternionic analysis related to the Helmholtz operator. Math. Nachr., 280(11) (2007), 1268–1281.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Nicolaide. Three-dimensional analogof theCauchy integral formula for solving magnetic fields problems. IEEE Transactions on Magnetic, 34(3) (1998), 608–612.

    Article  Google Scholar 

  34. K.B. Oldhamand J. Spanier. The Fractional Calculus. Academic Press, New York (1974).

    Google Scholar 

  35. S.G. Samko, A.A. Kilbas and O.I. Marichev. Fractional integrals and derivatives theory and applications. Gordon and Breach, New York (1993).

    MATH  Google Scholar 

  36. B. Schneider. Singular integrals of the time harmonic Maxwell equations theory on a piecewise Liapunov surface. Appl. Math. E-Notes, 7 (2007), 139–146.

    MathSciNet  MATH  Google Scholar 

  37. B. Schneider and M. Shapiro. Some properties of the Cauchy-type integral for the time-harmonic Maxwell equations. Integral Equations Operator Theory, 44(1) (2002), 93–126.

    Article  MathSciNet  MATH  Google Scholar 

  38. A.D. Seagar. Calculation of electromagnetic fields in three dimensions using the Cauchy integral. IEEE Transactions on Magnetics, 48(2) (2012), 175–178.

    Article  Google Scholar 

  39. E.M. Stein. Singular integrals and differentiability properties of functions. PrincetonMath. Ser. 30, Princeton Univ. Press, Princeton, N.J. (1970).

    MATH  Google Scholar 

  40. J.A. Stratton and L.J. Chu. Diffraction theory of electromagnetic waves. Phys. Rev., II. Ser. 56 (1939), 99–107.

    MATH  Google Scholar 

  41. V.E. Tarasov. Electromagnetic fields on fractals.Mod. Phys. Lett.A, 21(20) (2006), 1587–1600.

    MathSciNet  MATH  Google Scholar 

  42. V.E. Tarasov. Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys., 323(11) (2008), 2756–2778.

    Article  MathSciNet  MATH  Google Scholar 

  43. Z. Xu. A function theory for the operator D-?. Complex Variables Theory Appl., 16(1) (1991), 27–42.

    Article  MathSciNet  MATH  Google Scholar 

  44. Y. Zhao, D. Baleanu, C. Cattani, D.-F. Cheng and X.-J. Yang. Maxwell’s equations on Cantor sets: A local fractional approach. Advances in High Energy Physics, Article ID 686371, 6 pages, doi:10.1155/2013/686371 (2013).

    MATH  Google Scholar 

  45. M.S. Zhdanov. Integral transforms in geophysics. Translated from the Russian by Tamara M. Pyankova. Springer-Verlag, Berlin (1988).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Bory-Reyes.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu-Blaya, R., Ávila-Ávila, R., Bory-Reyes, J. et al. Cauchy representation formulas for Maxwell equations in 3-dimensional domains with fractal boundaries. Bull Braz Math Soc, New Series 46, 681–700 (2015). https://doi.org/10.1007/s00574-015-0108-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-015-0108-8

Keywords

Mathematical subject classification

Navigation