Skip to main content
Log in

Elliptic logarithms, diophantine approximation and the Birch and Swinnerton-Dyer conjecture

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

Most, if not all, unconditional results towards the abc-conjecture rely ultimately on classical Baker’s method. In this article, we turn our attention to its elliptic analogue. Using the elliptic Baker’s method, we have recently obtained a new upper bound for the height of the S-integral points on an elliptic curve. This bound depends on some parameters related to the Mordell-Weil group of the curve. We deduce here a bound relying on the conjecture of Birch and Swinnerton-Dyer, involving classical, more manageable quantities. We then study which abc-type inequality over number fields could be derived from this elliptic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Baker. Logarithmic forms and the abc-conjecture. In: Number theory (Eger, 1996), pages 37–44. de Gruyter, Berlin (1998).

    Google Scholar 

  2. G.V. Belyĭ. Galois extensions of a maximal cyclotomic field. (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 43(2) (1979), 267–276. Translation in Math. USSRIzv. 14 (2) (1980), 247–256.

    MATH  MathSciNet  Google Scholar 

  3. Y. Bilu. Quantitative Siegel’s theorem for Galois coverings. Compositio Math., 106(2) (1977), 125–158.

    Article  MathSciNet  Google Scholar 

  4. Y. Bilu. Baker’s method and modular curves. In: A panorama of number theory or the view from Baker’s garden (Zürich, 1999), pages 73–88. Cambridge Univ. Press, Cambridge (2002).

    Google Scholar 

  5. A. Brumer and K. Kramer. The conductor of an abelian variety. CompositioMath., 92(2) (1994), 227–248.

    MATH  MathSciNet  Google Scholar 

  6. V. Bosser and A. Surroca. Upper bound for the height of S-integral points on elliptic curves. arXiv:1208.2693, to appear in Ramanujan Journal, (2012), 17 pages.

    Google Scholar 

  7. B.J. Birch and H.P.F. Swinnerton-Dyer.Notes on elliptic curves. II. J. ReineAngew. Math., 218 (1965), 79–108.

    MATH  MathSciNet  Google Scholar 

  8. Y. Bilu, M. Strambi and A. Surroca. A quantitative Chevalley-Weil theorem for curves. arXiv:0908.1233, (2011).

    Google Scholar 

  9. J.W.S. Cassels. An introduction to the geometry of numbers. Classics in Mathematics. Springer-Verlag, Berlin, 1997. Corrected reprint of the 1971 edition.

    Google Scholar 

  10. G. Cornell and J.H. Silverman, editors. Arithmetic geometry. Springer-Verlag, New York, 1986. Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30–August 10, (1984).

    MATH  Google Scholar 

  11. J. Coates and A. Wiles. On the conjecture of Birch and Swinnerton-Dyer. Invent. Math., 39(3) (1977), 223–251.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. David. Minorations de formes linéaires de logarithmes elliptiques. Mém. Soc. Math. France (N.S.), (62): iv+143, (1995).

    Google Scholar 

  13. S. David and N. Hirata-Kohno. Linear forms in elliptic logarithms. J. Reine Angew. Math., 628 (2009), 37–89.

    MATH  MathSciNet  Google Scholar 

  14. N.D. Elkies. ABC implies Mordell. Internat. Math. Res. Notices, (7): 99–109, (1991).

    Google Scholar 

  15. B.H. Gross. On the conjecture of Birch and Swinnerton-Dyer for elliptic curves with complex multiplication. In: Number theory related to Fermat’s last theorem (Cambridge, Mass., 1981), volume 26 of Progr. Math., pages 219–236. Birkhäuser Boston, Mass., (1982).

    Chapter  Google Scholar 

  16. D. Goldfeld and L. Szpiro. Bounds for the order of the Tate-Shafarevich group. Compositio Math., 97(1–2) (1995), 71–87. Special issue in honour of Frans Oort.

    MATH  MathSciNet  Google Scholar 

  17. K. Györy and K. Yu. Bounds for the solutions of S-unit equations and decomposable form equations. Acta Arith., 123(1) (2006), 9–41.

    Article  MATH  MathSciNet  Google Scholar 

  18. K. Györy. Solving Diophantine equations by Baker’s theory. In: A panorama of number theory or the view from Baker’s garden (Zürich, 1999), pages 38–72. Cambridge Univ. Press, Cambridge (2002).

    Google Scholar 

  19. K. Györy. On the abc conjecture in algebraic number fields. Acta Arith., 133(3) (2008), 281–295.

    Article  MATH  MathSciNet  Google Scholar 

  20. B.H. Gross and D.B. Zagier. Heegner points and derivatives of L-series. Invent. Math., 84(2) (1986), 225–320.

    Article  MATH  MathSciNet  Google Scholar 

  21. N. Hirata. Minorations de formes linéaires de logarithmes elliptiques p-adiques. Work in progress (2012).

    Google Scholar 

  22. V.A. Kolyvagin. Finiteness of E(Q) and SH(E; Q) for a subclass of Weil curves. Izv. Akad. Nauk SSSR Ser. Mat., 52(3) (1988), 522–540, 670–671.

    MathSciNet  Google Scholar 

  23. P. Lockhart, M. Rosen and J.H. Silverman. An upper bound for the conductor of an abelian variety. J. Algebraic Geom., 2(4) (1993), 569–601.

    MATH  MathSciNet  Google Scholar 

  24. Ju. I. Manin. Cyclotomic fields and modular curves. Uspehi Mat. Nauk, 26(6(162)) (1971), 7–71.

    MATH  MathSciNet  Google Scholar 

  25. D.W. Masser. Elliptic functions and transcendence. Springer-Verlag, Berlin, (1975). Lecture Notes in Mathematics, Vol. 437.

    MATH  Google Scholar 

  26. D.W. Masser. Counting points of small height on elliptic curves. Bull. Soc. Math. France, 117(2) (1989), 247–265.

    MATH  MathSciNet  Google Scholar 

  27. D.W. Masser. On abc and discriminants. Proc. Amer. Math. Soc., 130(11) (2002), 3141–3150 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  28. Laurent Moret-Bailly. Hauteurs et classes de Chern sur les surfaces arithmétiques. Astérisque, (183): 37–58, 1990. Séminaire sur les Pinceaux de Courbes Elliptiques, Paris (1988).

    Google Scholar 

  29. J.-F. Mestre. Formules explicites et minorations de conducteurs de variétés algébriques. Compositio Math., 58(2) (1986), 209–232.

    MATH  MathSciNet  Google Scholar 

  30. J.S. Milne. On the arithmetic of abelian varieties. Invent. Math., 17 (1972), 177–190.

    Article  MATH  MathSciNet  Google Scholar 

  31. J. Oesterlé. Nouvelles approches du “théorème” deFermat. Astérisque, (161–162): Exp. No. 694, 4, 165–186 (1989), 1988. Séminaire Bourbaki, Vol. 1987/88.

    Google Scholar 

  32. T. Ooe and J. Top. On the Mordell-Weil rank of an abelian variety over a number field. J. Pure Appl. Algebra, 58(3) (1989), 261–265.

    Article  MATH  MathSciNet  Google Scholar 

  33. P. Philippon. Quelques remarques sur des questions d’approximation diophantienne. Bull. Austral. Math. Soc., 59(2) (1999), 323–334.

    Article  MATH  MathSciNet  Google Scholar 

  34. G. Rémond. Intersection de sous-groupes et de sous-variétés. I. Math. Ann., 333(3) (2005), 525–548.

    Article  MATH  MathSciNet  Google Scholar 

  35. G. Rémond. Nombre de points rationnels des courbes. Proc. Lond. Math. Soc., 101(3) (2010), 759–794.

    Article  MATH  MathSciNet  Google Scholar 

  36. K. Rubin. Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication. Invent. Math., 89(3) (1987), 527–559.

    Article  MATH  MathSciNet  Google Scholar 

  37. J.-P. Serre. Lectures on the Mordell-Weil theorem. Aspects of Mathematics. Friedr. Vieweg & Sohn, Braunschweig, third edition, 1997. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt, With a foreword by Brown and Serre.

    Google Scholar 

  38. G. Shimura. Introduction to the arithmetic theory of automorphic functions, volume 11 of Publications of the Mathematical Society of Japan. Princeton University Press, Princeton, NJ, 1994. Reprint of the 1971 original, Kano Memorial Lectures, 1.

    MATH  Google Scholar 

  39. G. Shimura and Y. Taniyama. Complex multiplication of abelian varieties and its applications to number theory, volume 6 of Publications of the Mathematical Society of Japan. The Mathematical Society of Japan, Tokyo (1961).

    MATH  Google Scholar 

  40. C.L. Stewart and R. Tijdeman. On the Oesterlé-Masser conjecture. Monatsh. Math., 102(3) (1986), 251–257.

    Article  MATH  MathSciNet  Google Scholar 

  41. A. Surroca. Siegel’s theorem and the abc conjecture. Riv. Mat. Univ. Parma (7), 3*: (2004), 323–332.

    Google Scholar 

  42. A. Surroca. Sur l’effectivité du théorème de Siegel et la conjecture abc. J. Number Theory, 124 (2007), 267–290.

    Article  MATH  MathSciNet  Google Scholar 

  43. A. Surroca. On the Mordell-Weil group and the Tate-Shafarevich group of an abelian variety. arXiv:0801.1054, (2012), 22 pages.

    Google Scholar 

  44. C.L. Stewart and K. Yu. On the abc conjecture. Math. Ann., 291(2) (1991), 225–230.

    Article  MATH  MathSciNet  Google Scholar 

  45. C.L. Stewart and K. Yu. On the abc conjecture. II. Duke Math. J., 108(1) (2001), 169–181.

    Article  MATH  MathSciNet  Google Scholar 

  46. A. Wiles. Modular elliptic curves and Fermat’s last theorem. Ann. of Math. (2), 141(3) (1995), 443–551.

    Article  MATH  MathSciNet  Google Scholar 

  47. K. Yu. Linear forms in p-adic logarithms. III. Compositio Math., 91(3) (1994), 241–276.

    MATH  MathSciNet  Google Scholar 

  48. K. Yu. p-adic logarithmic forms and group varieties. II. Acta Arith., 89(4) (1999), 337–378.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Surroca.

Additional information

Supported by the contract ANR “HAMOT”, BLAN-0115-01.

Supported by an Ambizione fund PZ00P2_121962of the Swiss National Science Foundation and the Marie Curie IEF 025499 of the European Community.

About this article

Cite this article

Bosser, V., Surroca, A. Elliptic logarithms, diophantine approximation and the Birch and Swinnerton-Dyer conjecture. Bull Braz Math Soc, New Series 45, 1–23 (2014). https://doi.org/10.1007/s00574-014-0038-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-014-0038-x

Keywords

Mathematical subject classification

Navigation