Skip to main content
Log in

Hermitian decomposition of continuous functions on a fractal surface

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

In this paper the Théodoresco transform is used to show that, under additional assumptions, each Hölder continuous function f defined on the boundary Γ of a fractal domain Ω ⊂ ℝ2n can be expressed as f = Ψ+ − Ψ, where Ψ± are Hölder continuous functions on Γ and Hermitian monogenically extendable to Ω and to ℝ2n ∖ (Ω ∪ Γ) respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abreu Blaya, J. Bory Reyes and D. Peña Peña. Jump problem and removable singularities for monogenic functions. J. Geom. Anal., 17(1) (2007), 1–13.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Abreu Blaya, D. Peña Peña and J. Bory Reyes. Clifford Cauchy type integrals on Ahlfors-David regular surfaces inm+1. Adv. Appl. Clifford Algebras, 13(2) (2003), 133–156.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Abreu Blaya, J. Bory Reyes and T. Moreno García. Cauchy Transform on non-rectifiable surfaces in Clifford Analysis. J. Math. Anal. Appl., 339 (2008), 31–44.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Abreu Blaya, J. Bory Reyes and T. Moreno García. Teodorescu transform decomposition of multivector fields on fractal hypersurfaces. Wavelets, multiscale systems and hypercomplex analysis, 1–16, Oper. Theory Adv. Appl., 167 (2006), Birkhäuser, Basel.

    Google Scholar 

  5. R Abreu Blaya, J. Bory Reyes, D. Peña Peña and F. Sommen. Aboundaryvalue problem for Hermitian monogenic functions. Bound. Value Probl., vol. 2008, Article ID 385874, 7 pages, (2008).

  6. R. Abreu Blaya, J. Bory Reyes and T. Moreno García. Minkowski dimension and Cauchy transform in Clifford análisis. Compl. Anal. Oper. Theory, 1(3) (2007), 301–315.

    Article  MATH  Google Scholar 

  7. F. Brackx, R. Delanghe and F. Sommen. Clifford analysis. Research Notes in Mathematics, 76, Pitman (Advanced Publishing Program), Boston, (1982).

  8. F. Brackx, J. Bureš, H. De Schepper, D. Eelbode, F. Sommen and V. Souček. Fundaments of Hermitean Clifford Analysis Part I: Complex Structure. Complex Anal. Oper. Theory, 1(3) (2007), 341–365.

    Article  MATH  MathSciNet  Google Scholar 

  9. F. Brackx, J. Bureš, H. De Schepper, D. Eelbode, F. Sommen and V. Souček. Fundaments of Hermitean Clifford Analysis Part II: Splitting of h-monogenic equations. Complex Var. Elliptic Equ., 52(10–11) (2007), 1063–1079.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. David and S. Semmes. Analysis of and on uniformly rectifiable sets.Mathematical Surveys and Monographs, 38. American Mathematical Society, Providence, RI, (1993).

    MATH  Google Scholar 

  11. R. Delanghe, F. Sommen and V. Souček. Clifford algebra and spinor-valued functions, 53. Kluwer Academic Publishers Group, Dordrecht, (1992).

    Google Scholar 

  12. K.J. Falconer. The geometry of fractal sets. Cambridge Tracts in Mathematics, 85. Cambridge University Press, Cambridge, (1986).

    Google Scholar 

  13. H. Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc., New York (1969).

    MATH  Google Scholar 

  14. J. Gilbert and M. Murray. Clifford algebras and Dirac operators in harmonic analysis, 26. Cambridge University Press, Cambridge, (1991).

    Google Scholar 

  15. P. Mattila. Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, (1995).

    MATH  Google Scholar 

  16. R. Rocha-Chávez, M. Shapiro and F. Sommen. Integral theorems for functions and differential forms inm. Research Notes in Mathematics, 428. Chapman & Hall/CRC, Boca Raton, FL, (2002).

    Google Scholar 

  17. I. Sabadini and F. Sommen. Hermitian Clifford analysis and resolutions. Clifford analysis in applications. Math. Methods Appl. Sci., 25(16–18) (2002), 1395–1413.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Abreu Blaya.

About this article

Cite this article

Blaya, R.A., Reyes, J.B. & García, T.M. Hermitian decomposition of continuous functions on a fractal surface. Bull Braz Math Soc, New Series 40, 107–115 (2009). https://doi.org/10.1007/s00574-009-0006-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-009-0006-z

Keywords

Mathematical subject classification

Navigation