Skip to main content
Log in

An arbuscular mycorrhizal fungus alters switchgrass growth, root architecture, and cell wall chemistry across a soil moisture gradient

  • Short Note
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The abiotic environment can dictate the relative costs and benefits of plant-arbuscular mycorrhizal fungi (AMF) symbioses. While the effects of varying light or soil nutrient conditions are well studied, outcomes of plant-AMF interactions along soil moisture gradients are not fully understood. It is predicted that mycorrhizal associations may become parasitic in extreme soil moisture conditions. Under low soil moisture stress, costs of maintaining a mycorrhizal symbiont may outweigh benefits for the host plant, whereas under high soil moisture stress, the host plant may not need the symbiont. In a factorial growth chamber study, we investigated the effects of a plant-arbuscular mycorrhizal fungus symbiosis along a soil moisture gradient on growth, cell wall chemistry, and root architecture of a biofuel crop, Panicum virgatum (switchgrass). Regardless of soil moisture conditions, we found an increase in the number of tillers, number of leaves, root biomass, and amount of cellulose and hemicellulose in response to root colonization by the arbuscular mycorrhizal fungus. The fungus also increased aboveground biomass and changed several root architectural traits, but only under low soil moisture conditions, indicating a reduction in benefits of the mycorrhizal association under high soil moisture. Results from this study indicate that an arbuscular mycorrhizal fungus can increase some key measures of plant growth and cell wall chemistry regardless of soil moisture conditions but is most beneficial in low soil moisture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Alam SM (1999) Nutrient uptake by plants under stress conditions. Handbook of Plant and Crop Stress 2:285–313

    Google Scholar 

  • Alderson J, Sharp W (1994) Grass varieties in the United States. Agricultural Handbook No. 170. Soil Conserv. Serv., USDA, Washington, DC

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press

  • Anderson R, Liberta A, Dickman L (1984) Interaction of vascular plants and vesicular-arbuscular mycorrhizal fungi across a soil moisture-nutrient gradient. Oecologia 64:111–117

    CAS  PubMed  Google Scholar 

  • ANKOM200 (2016) Technical Support Fiber Analyzer A200. https://www.ankom.com/technical-support/fiber-analyzer-a200. Accessed 01/24/2020 2020

  • Asrar A, Abdel-Fattah G, Elhindi K (2012) Improving growth, flower yield, and water relations of snapdragon (Antirrhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 50:305–316

    CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balestrini R, Bonfante P (2005) The interface compartment in arbuscular mycorrhizae: a special type of plant cell wall? Plant Biosystems 139:8–15

    Google Scholar 

  • Baslam M, Garmendia I, Goicoechea N (2011) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J Agric Food Chemistry 59:5504–5515

    CAS  Google Scholar 

  • Bennett AE, Grussu D, Kam J, Caul S, Halpin C (2015) Plant lignin content altered by soil microbial community. New Phytol 206:166–174

    CAS  PubMed  Google Scholar 

  • Bonfante-Fasolo P, Vian B, Perotto S, Faccio A, Knox JP (1990) Cellulose and pectin localization in roots of mycorrhizal Allium porrum: labelling continuity between host cell wall and interfacial material. Planta 180:537

    CAS  PubMed  Google Scholar 

  • Brejda JJ, Yocom D, Moser LE, Waller SS (1993) Dependence of 3 Nebraska Sandhills warm-season grasses on vesicular-arbuscular mycorrhizae. J Range Manage 46:14-20

    Google Scholar 

  • Campbell Scientific (2020) HydroSense II Handheld Soil Moisture Sensor. https://www.campbellsci.com/hs2. Accessed 01/24/2020

  • Carnicer J, Coll M, Ninyerola M, Pons X, Sanchez G, Penuelas J (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Academy Sci 108:1474–1478

    CAS  Google Scholar 

  • Castellanos-Morales V, Villegas J, Wendelin S, Vierheilig H, Eder R, Cárdenas-Navarro R (2010) Root colonisation by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria× ananassa Duch.) at different nitrogen levels. J Sci Food Agric 90:1774–1782

    CAS  PubMed  Google Scholar 

  • Chen XW, Kang Y, San So P, Ng CWW, Wong MH (2018) Arbuscular mycorrhizal fungi increase the proportion of cellulose and hemicellulose in the root stele of vetiver grass. Plant Soil 425:309–319

    CAS  Google Scholar 

  • Clark R, Baligar V, Zobel R (2005) Response of mycorrhizal switchgrass to phosphorus fractions in acidic soil. Commun Soil Sci Plant Anal 36:1337–1359

    CAS  Google Scholar 

  • Clark R, Zeto S, Zobel R (1999) Arbuscular mycorrhizal fungal isolate effectiveness on growth and root colonization of Panicum virgatum in acidic soil. Soil Biol Biochem 31:1757–1763

    CAS  Google Scholar 

  • Detering S, Dettmann S, Thierfelder H, Mahna SK, Prasad B, Shamseldin AY, Werner D (2005) Glycosidase and glycosyltransferase activity increase in arbuscular mycorrhiza infected legume roots. Symbiosis 40:157–162

    CAS  Google Scholar 

  • Douds DD, Pfeffer PE, Shachar-Hill Y (2000) Application of in vitro methods to study carbon uptake and transport by AM fungi. Plant Soil 226:255–261

    CAS  Google Scholar 

  • Earl HJ (2003) A precise gravimetric method for simulating drought stress in pot experiments. Crop Sci 43:1868–1873

    Google Scholar 

  • Emery SM, Gross KL (2007) Dominant species identity, not community evenness, regulates invasion in experimental grassland plant communities. Ecology 88(4):954–964

    PubMed  Google Scholar 

  • Emery SM, Reid ML, Bell-Dereske L, Gross KL (2017) Soil mycorrhizal and nematode diversity vary in response to bioenergy crop identity and fertilization. Gcb Bioenergy 9:1644–1656

    CAS  Google Scholar 

  • Emery SM, Rudgers JA (2012) Impact of competition and mycorrhizal fungi on growth of Centaurea stoebe, an invasive plant of sand dunes. Am Midl Nat 167(2):213–222

    Google Scholar 

  • Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann PM (2006) Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol 140:603–612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorilli V, Catoni M, Miozzi L, Novero M, Accotto GP, Lanfranco L (2009) Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytol 184:975–987

    CAS  PubMed  Google Scholar 

  • Ganz T, Kailis S, Abbott L (2002) Mycorrhizal colonization and its effect on growth, phosphorus uptake and tissue phenolic content in the European olive (Olea europaea L.) Adv Horticult Sci:109–116

  • He C, Wolyn D (2005) Potential role for salicylic acid in induced resistance of asparagus roots to Fusarium oxysporum f. sp. Asparagi. Plant Pathol 54:227-232Z

    CAS  Google Scholar 

  • Hetrick BD, Leslie J, Wilson GT, Kitt DG (1988) Physical and topological assessment of effects of a vesicular–arbuscular mycorrhizal fungus on root architecture of big bluestem. New Phytol 110:85–96

    Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    CAS  Google Scholar 

  • Jayne B, Quigley M (2014) Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis. Mycorrhiza 24:109–119

    PubMed  Google Scholar 

  • Johnson NC, Graham J, Smith F (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–585

    Google Scholar 

  • Jung HJG, Vogel KP (1992) Lignification of switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) plant parts during maturation and its effect on fibre degradability. J Sci Food Agric 59:169–176

    CAS  Google Scholar 

  • Lee BR, Muneer S, Jung WJ, Avice JC, Ourry A, Kim TH (2012) Mycorrhizal colonization alleviates drought-induced oxidative damage and lignification in the leaves of drought-stressed perennial ryegrass (Lolium perenne). Physiologia Plant 145:440–449

    CAS  Google Scholar 

  • Lehmann A, Rillig MC (2015) Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops- a meta-analysis. Soil Biol Biochem 81:147–158

    CAS  Google Scholar 

  • Lipiec J, Doussan C, Nosalewicz A, Kondracka K (2013) Effect of drought and heat stresses on plant growth and yield: a review. International Agrophysics 27:463–477

    Google Scholar 

  • Marulanda A, Barea J-M, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regulation 28:115–124

    CAS  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997

    CAS  PubMed  Google Scholar 

  • Miller SP (2000) Arbuscular mycorrhizal colonization of semi-aquatic grasses along a wide hydrologic gradient. New Phytol 145:145–155

    Google Scholar 

  • Moore JP, Vicré-Gibouin M, Farrant JM, Driouich A (2008) Adaptations of higher plant cell walls to water loss: drought vs desiccation. Physiol Plant 134:237–245

    CAS  PubMed  Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251

    CAS  Google Scholar 

  • Morrow WR III, Gopal A, Fitts G, Lewis S, Dale L, Masanet E (2014) Feedstock loss from drought is a major economic risk for biofuel producers. Biomass Bioenergy 69:135–143

    Google Scholar 

  • Nilsen P, Børja I, Knutsen H, Brean R (1998) Nitrogen and drought effects on ectomycorrhizae of Norway spruce Picea abies L. (Karst.). Plant Soil 198:179–184

    CAS  Google Scholar 

  • Oláh B, Brière C, Bécard G, Dénarié J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signaling pathway. The Plant J 44:195–207

    PubMed  Google Scholar 

  • Olsson PA, Rahm J, Aliasgharzad N (2010) Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. FEMS Microbiol Ecol 72:125–131

    PubMed  Google Scholar 

  • Paracer S, Ahmadjian V (2000) Symbiosis: an introduction to biological associations. Oxford University Press on Demand

  • Rich MK, Schorderet M, Reinhardt D (2014) The role of the cell wall compartment in mutualistic symbioses of plants. Front Plant Sci 5:238

    PubMed  PubMed Central  Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels Nat 454:841–845

    CAS  Google Scholar 

  • Runion G, Mitchell R, Rogers H, Prior S, Counts T (1997) Effects of nitrogen and water limitation and elevated atmospheric CO2 on ectomycorrhiza of longleaf pine. New Phytol 137:681–689

    Google Scholar 

  • Schouteden N, Waele DD, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280

    PubMed  PubMed Central  Google Scholar 

  • Schravendijk HW, Van Andel OM (1985) Interdependence of growth, water relations and abscisic acid level in Phaseolus vulgaris during waterlogging. Physiol Plant 63(2):215–220

    Google Scholar 

  • Secilia J, Bagyaraj D (1992) Selection of efficient vesicular-arbuscular mycorrhizal fungi for wetland rice (Oryza sativa L.). Biol Fertil Soils 13:108–111

    Google Scholar 

  • Smith FA, Smith SE (2013) How useful is the mutualism-parasitism continuum of arbuscular mycorrhizal functioning? Plant Soil 363:7–18

    CAS  Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic press

  • Swaty RL, Gehring CA, Van Ert M, Theimer TC, Keim P, Whitham TG (1998) Temporal variation in temperature and rainfall differentially affects ectomycorrhizal colonization at two contrasting sites. New Phytol 139:733–739

    Google Scholar 

  • Team R Core (2017) R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria URL https://www.R-project.org

  • Thorne MA, Frank DA (2009) The effects of clipping and soil moisture on leaf and root morphology and root respiration in two temperate and two tropical grasses. Plant Ecol 200:205–215

  • Valdes M, Asbjornsen H, Gómez-Cárdenas M, Juarez M, Vogt K (2006) Drought effects on fine roots and ectomycorrhizal-root biomass in managed Pinus oaxacana Mirov stands in Oaxaca, Mexico. Mycorrhiza 16:117–124

  • Van Soest P, Robertson J (1979) Systems of analysis for evaluating fibrous feeds. In: Standardization of analytical methodology for feeds: Proc. of a Workshop IDRC, Ottawa, ON, CA

  • Veresoglou SD, Menexes G, Rillig MC (2012) Do arbuscular mycorrhizal fungi affect the allometric partition of host plant biomass to shoots and roots? A meta-analysis of studies from 1990 to 2010. Mycorrhiza 22:227–235

    PubMed  Google Scholar 

  • Vierheilig H, Schweiger P, Brundrett M (2005) An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiologia Plant 125:393–404

    CAS  Google Scholar 

  • Vincent C, Rowland D, Na C, Schaffer B (2017) A high-throughput method to quantify root hair area in digital images taken in situ. Plant Soil 412:61–80

    CAS  Google Scholar 

  • Vorwerk S, Somerville S, Somerville C (2004) The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci 9:203–209

    CAS  PubMed  Google Scholar 

  • Wang Y, Qiu Q, Yang Z, Hu Z, Tam NF-Y, Xin G. (2010) Arbuscular mycorrhizal fungi in two mangroves in South China. Plant Soil 331:181–191

    CAS  Google Scholar 

  • Wirsel SG (2004) Homogenous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 48:129–138

    CAS  PubMed  Google Scholar 

  • Wolf DD, Fiske DA (2009) Planting and managing switchgrass for forage, wildlife and conservation. Virginia Cooperative Extension 418:013

    Google Scholar 

  • Wu Q-S, Xia R-X (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    CAS  Google Scholar 

  • Yao Q, Wang L, Zhu H, Chen J (2009) Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Sci Hortic 121:458–461

    Google Scholar 

  • Zhang R-Q, Zhu H-H, Zhao H-Q, Yao Q (2013) Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. J Plant Physiol 170:74–79

    CAS  Google Scholar 

  • Zou Y-N, Wang P, Liu C-Y, Ni Q-D, Zhang D-J, Wu Q-S (2017) Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. Scientific Reports 7:1–10

    Google Scholar 

  • Zwiazek JJ (1991) Cell wall changes in white spruce (Picea glauca) needles subjected to repeated drought stress. Physiologia Plant 82:513–518

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Heather Griffith, Aaron Sexton, Kylea Garces, and Kimberly Koenig for various assistance in the lab. We also would like to thank Dr. David Harmon from the Ruminant Nutrition Lab, University of Kentucky for providing lab space and instruments to perform fiber analyses. Finally, we would like to thank Dr. Dave Janos and two anonymous reviewers who provided constructive comments which greatly improved our manuscript.

Funding

Funding for this study was provided by the Kentucky Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binod Basyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basyal, B., Emery, S.M. An arbuscular mycorrhizal fungus alters switchgrass growth, root architecture, and cell wall chemistry across a soil moisture gradient. Mycorrhiza 31, 251–258 (2021). https://doi.org/10.1007/s00572-020-00992-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-020-00992-6

Keywords

Navigation