Skip to main content
Log in

A single ectomycorrhizal plant root system includes a diverse and spatially structured fungal community

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Although only a relatively small proportion of plant species form ectomycorrhizae with fungi, it is crucial for growth and survival for a number of widespread woody plant species. Few studies have attempted to investigate the fine scale spatial structure of entire root systems of adult ectomycorrhizal (EcM) plants. Here, we use the herbaceous perennial Bistorta vivipara to map the entire root system of an adult EcM plant and investigate the spatial structure of its root-associated fungi. All EcM root tips were sampled, mapped and identified using a direct PCR approach and Sanger sequencing of the internal transcribed spacer region. A total of 32.1% of all sampled root tips (739 of 2302) were successfully sequenced and clustered into 41 operational taxonomic units (OTUs). We observed a clear spatial structuring of the root-associated fungi within the root system. Clusters of individual OTUs were observed in the younger parts of the root system, consistent with observations of priority effects in previous studies, but were absent from the older parts of the root system. This may suggest a succession and fragmentation of the root-associated fungi even at a very fine scale, where competition likely comes into play at different successional stages within the root system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgments

We would like to acknowledge Cecilie Mathiesen for an excellent effort in preparation of samples for sequencing, Rune Halvorsen for valuable input on ordination methods and Erlend Y. Fines for assistance in graphical design and excellent drawing.

Funding

This project was funded by University of Oslo.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the completion of the article. The main ideas and design of the study were done by TC, HK and ET. Sampling and laboratory work were conducted by mainly ET, but also ABA and UV. ABA contributed substantially in ideas on analyses of the data. Drafting and writing of the manuscript was mainly performed by ET, but all authors (ABA, UV, AKB, IS, TC, HK) contributed substantially to supervision, ideas and discussion of the results in the writing process.

Corresponding author

Correspondence to Ella Thoen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 58 kb)

Fig. S1

Multiple parallel ordinations (MPO) using DCA (A, B, C) and GNMDS (D, E, F) with raw (A, D), power-weighted (w=0.5, B, E) and presence/absence (C, F) data using fine roots as sites. All ordination methods and weighting functions show similar point configuration, supporting a strong gradient in the dataset. Arrows depicts significant variables fitted onto the ordination diagrams using envar function in the vegan package (Oksanen et al. 2013). position=postion of fine root along the rhizome, diversity=Shannon’s H calculated per fine root, richnes=richness per fine root, length=relative length of fine root, branch=number of branches per fine root, no_root_tip=number of root tips per fine root, no_exp_types=number of exploration type per fine root. Assigned exploration types are: contact, short smooth (sh_smooth), medium smooth (med_smooth) and additionally, hydrophilic for hydrophilic exploration types (PNG 323 kb)

High Resolution Image (TIF 84000 kb)

Fig. S2

Photograph of one of the fine roots from the B. vivipara root system, showing how root tips are growing from fine roots and branches from the main fine roots. Because the real orientation of the main fine roots and branches in the soil is unknown, we assigned the root tips to three distance classes; neighbour, adjacent and non-neighbour. We assumed that, for instance, A and B were located in very close proximity in the soil (i.e. strict neighbours), and that C, on the same branch, is closer to A and B (i.e. adjacent) than it was to D, which was most likely located further away from A, B and C (i.e. non-neighbour) (PNG 1808 kb)

High Resolution Image (TIF 4250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thoen, E., Aas, A.B., Vik, U. et al. A single ectomycorrhizal plant root system includes a diverse and spatially structured fungal community. Mycorrhiza 29, 167–180 (2019). https://doi.org/10.1007/s00572-019-00889-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-019-00889-z

Keywords

Navigation