Skip to main content

Advertisement

Log in

Phylogenetic, structural, and functional characterization of AMT3;1, an ammonium transporter induced by mycorrhization among model grasses

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

In the arbuscular mycorrhizal (AM) symbiosis, plants satisfy part of their nitrogen (N) requirement through the AM pathway. In sorghum, the ammonium transporters (AMT) AMT3;1, and to a lesser extent AMT4, are induced in cells containing developing arbuscules. Here, we have characterized orthologs of AMT3;1 and AMT4 in four other grasses in addition to sorghum. AMT3;1 and AMT4 orthologous genes are induced in AM roots, suggesting that in the common ancestor of these five plant species, both AMT3;1 and AMT4 were already present and upregulated upon AM colonization. An artificial microRNA approach was successfully used to downregulate either AMT3;1 or AMT4 in rice. Mycorrhizal root colonization and hyphal length density of knockdown plants were not affected at that time, indicating that the manipulation did not modify the establishment of the AM symbiosis and the interaction between both partners. However, expression of the fungal phosphate transporter FmPT was significantly reduced in knockdown plants, indicating a reduction of the nutrient fluxes from the AM fungus to the plant. The AMT3;1 knockdown plants (but not the AMT4 knockdown plants) were significantly less stimulated in growth by AM fungal colonization, and uptake of both 15N and 33P from the AM fungal network was reduced. This confirms that N and phosphorus nutrition through the mycorrhizal pathway are closely linked. But most importantly, it indicates that AMT3;1 is the prime plant transporter involved in the mycorrhizal ammonium transfer and that its function during uptake of N cannot be performed by AMT4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baday S, Wang S, Lamoureux G, Bernèche S (2013) Two distinct transport mechanisms in AmtB and RhCG proteins. Biophys J 104:285a

    Article  Google Scholar 

  • Baday S, Orabi EA, Wang S, Lamoureux G, Bernèche S (2015) Mechanism of NH4 + recruitment and NH3 transport in Rh proteins. Structure 23:1550–1557

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boeckstaens ML, André B, Marini AM (2008) Distinct transport mechanisms in yeast ammonium transport/sensor proteins of the Mep/Amt/Rh family and impact on filamentation. J Biol Chem 283:21362–21370

    Article  CAS  PubMed  Google Scholar 

  • Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2009) Protein structure homology modelling using SWISS-MODEL workspace. Nat Protoc 4:1–13

    Article  CAS  PubMed  Google Scholar 

  • Bouchenak-Khelladi Y, Salamin N, Savolainen V, Forest F, Bank MVD, Chase MW, Hodkinson TR (2008) Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. Mol Phylogenet Evol 47:488–505

    Article  CAS  PubMed  Google Scholar 

  • Breuillin-Sessoms F, Floss DS, Gomez SK et al (2015) Suppression of arbuscule degeneration in Medicago truncatula phosphate transporter 4 mutants is dependent on the ammonium transporter 2 family protein AMT2;3. Plant Cell 27:1352–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrese S, Perez-Tienda J, Ellerbeck M et al (2016) GiAMT3—a low-affinity ammonium transporter of the arbuscular mycorrhizal Rhizophagus irregularis. Front Plant Sci 7:679

    Article  PubMed  PubMed Central  Google Scholar 

  • Casieri L, Ait Lahmidi N, Doiddy J et al (2013) Biotrophic transportome in mutualistic plant-fungal interactions. Mycorrhiza 23:597–625

    Article  CAS  PubMed  Google Scholar 

  • Courty PE, Hoegger PJ, Kilaru S, Kohler A, Buée M, Garbaye J, Martin F, Kües U (2009) Phylogenetic analysis, genomic organization, and expression analysis of multi-copper oxidases in the ectomycorrhizal basidiomycete Laccaria bicolor. New Phytol 182:736–750

    Article  CAS  PubMed  Google Scholar 

  • Courty PE, Smith P, Koegel S, Redecker D, Wipf D (2015) Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions. Crit Rev Plant Sci 34:4–16

    Article  CAS  Google Scholar 

  • Couturier J, Montanini B, Martin F, Brun A, Blaudez D, Chalot M (2007) The expanded family of ammonium transporters in the perennial poplar plant. New Phytol 174:137–150

    Article  CAS  PubMed  Google Scholar 

  • Cusack BP, Wolfe KH (2007) When gene marriages don’t work out: divorce by subfunctionalization. Trends Genet 23:270–272

    Article  CAS  PubMed  Google Scholar 

  • Delaux PM, Séjalon-Delmas N, Bécard G, Ané JM (2013) Evolution of the plant-microbe “toolkit”. Trends Plant Sci 18:298–304

    Article  CAS  PubMed  Google Scholar 

  • Dohmen RJ, Strasser AWM, Höner CB, Hollenberg CP (1991) An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast 7:691–692

    Article  CAS  PubMed  Google Scholar 

  • Fong RN, Kim KS, Yoshihara C, Inwood WB, Kustu S (2007) The W148L substitution in the Escherichia coli ammonium channel AmtB increases flux and indicates that the substrate is an ion. Proc Natl Acad Sci U S A 104:18706–18711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey B, Schüepp H (1993) Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytol 124:221–230

  • Gamborg OL, Wetter LR (1975) Plant tissue culture methods. Natrional Research Concil of Canada, Saskatoon

    Google Scholar 

  • Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, von Wiren N (1999) Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glémin S, Bataillon T (2009) A comparative view of the evolution of grasses under domestication. New Phytol 183:273–290

    Article  PubMed  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  CAS  PubMed  Google Scholar 

  • Guether M, Neuhauser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009) A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu JY (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • Initiative TIB (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Javelle A, Lupo D, Ripoche P, Fulford T, Merrick M, Winkler FK (2008) Substrate binding, deprotonation, and selectivity at the periplasmic entrance of the Escherichia coli ammonia channel AmtB. Proc Natl Acad Sci U S A 105:5040–5045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 104:1720–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khademi S, O'Connell J, Remis J, Robles-Colmenares Y, Miercke LJW, Stroud RM (2004) Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 a. Science 305:1587–1594

    Article  CAS  PubMed  Google Scholar 

  • Kobae Y, Tamura Y, Takai S, Banba M, Hata S (2010) Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol 51:1411–1415

    Article  CAS  PubMed  Google Scholar 

  • Koegel S, Ait Lahmidi N, Arnould C et al (2013a) The family of ammonium transporters (AMT) in Sorghum bicolor: two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi. New Phytol 198:853–865

    Article  CAS  PubMed  Google Scholar 

  • Koegel S, Boller T, Lehmann MT, Wiemken A, Courty PE (2013b) Rapid nitrogen transfer in the Sorghum bicolor-Glomus mosseae arbuscular mycorrhizal symbiosis. Plant Signal Behav 8:e25229

    Article  PubMed  PubMed Central  Google Scholar 

  • Koegel S, Brulé D, Wiemken A, Boller T, Courty PE (2015) The effect of different nitrogen sources on the symbiotic interaction between Sorghum bicolor and Glomus intraradices: Expression of plant and fungal genes involved in nitrogen assimilation. Soil Biol Biochem 86:159–163

  • Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207

    Article  CAS  PubMed  Google Scholar 

  • López-Pedrosa A, González-Guerrero M, Valderas A, Azcón-Aguilar C, Ferrol N (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol 43:102–110

    Article  PubMed  Google Scholar 

  • Ludewig U, Neuhäusser B, Dynowski M (2007) Molecular mechanisms of ammonium transport and accumulation in plants. FEBS Lett 581:2301–2308

    Article  CAS  PubMed  Google Scholar 

  • Mäder P, Vierheilig H, Streitwolf-Engel R, Boller T, Frey B, Christie P, Wiemken A (2000) Transport of N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol 146:155–161

  • Marini AM, Soussi-Boudekou S, Vissers S, Andre B (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17:4282–4293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto T (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular arbuscular fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nagy R, Karandashov V, Chague W et al (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250

    Article  CAS  PubMed  Google Scholar 

  • Ninnemann O, Jauniaux JC, Frommer WB (1994) Identification of a high-affinity NH4 + transporter from plants. EMBO J 13:3464–3471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oehl F, Sieverding E, Mader P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583

    Article  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbiosis. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Tienda J, Testillano PS, Balestrini R, Fiorilli V, Azcón-Aguilar C, Ferrol N (2011) GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet Biol 48:1044–1055

    Article  PubMed  Google Scholar 

  • Perez-Tienda J, Corea A, Azcon-Aguilar C, Ferrol N (2014) Transcriptional regulation of host NH4 + transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots. Plant Physiol Biochem 75:1–8

    Article  CAS  PubMed  Google Scholar 

  • Prasad V, Strömberg CAE, Alimohammadian H, Sahni A (2005) Dinosaur coprolites and the early evolution of grasses and grazers. Science 310:1177–1180

    Article  CAS  PubMed  Google Scholar 

  • Ruzicka D, Hausmann N, Barrios-Masias F, Jackson L, Schachtman D (2012) Transcriptomic and metabolic responses of mycorrhizal roots to nitrogen patches under field conditions. Plant Soil 350:145–162

    Article  CAS  Google Scholar 

  • Sallaud C, Meynard D, Van Boxtel J et al (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106:1396–1408

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siewe RM, Weil B, Burkovski A, Eikmanns BJ, Eikmanns M, Krämer R (1996) Functional and genetic characterization of the (methyl)ammonium uptake carrier of Corynebacterium glutamicum. J Biol Chem 271:5398–5403

    Article  CAS  PubMed  Google Scholar 

  • Suenaga A, Moriya K, Sonoda Y, Ikeda A, von Wiren N, Hayakawa T, Yamaguchi J, Yamaya T (2003) Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol 44:206–211

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247–1254

    Article  CAS  Google Scholar 

  • Thomas GH, Mullins JGL, Merrick M (2000) Membrane topology of the Mep/Amt family of ammonium transporters. Mol Microbiol 37:331–344

    Article  CAS  PubMed  Google Scholar 

  • Tian CJ, Kasiborski B, Koul R, Lammers PJ, Bucking H, Shachar-Hill Y (2010) Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux. Plant Physiol 153:1175–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walder F, Brulé D, Koegel S, Wiemken A, Boller T, Courty PE (2015) Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytol 205:1632–1645

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Yeun LH, Xue JY, Liu Y, Ané JM, Qiu YL (2010) Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol 186:514–525

    Article  PubMed  Google Scholar 

  • Wang S, Orabi EA, Baday S, Bernèche S, Lamoureux G (2012) Ammonium transporters achieve charge transfer by fragmenting their substrate. J Am Chem Soc 134:10419–10427

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Orabi EA, Baday S, Bernèche S, Lamoureux G (2013) Computational investigation of charge transfer mechanisms in ammonium transporters. Biophys J 104:285a

    Article  Google Scholar 

  • Warthmann N, Chen H, Ossowski S, Weigel D, Hervé P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3:e1829

    Article  PubMed  PubMed Central  Google Scholar 

  • Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wipf D, Benjdia M, Rikirsch E, Zimmermann S, Tegeder M, Frommer WB (2003) An expression cDNA library for suppression cloning in yeast mutants, complementation of a yeast his4 mutant, and EST analysis from the symbiotic basidiomycete Hebeloma cylindrosporum. Genome 46:177–181

    Article  CAS  PubMed  Google Scholar 

  • Yang SY, Gronlund M, Jakobsen I, al. (2012) Non-redundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. Plant Cell 24:4236–4251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Liu X, Quan Z et al (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549–554

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by the Swiss National Science Foundation (grant nos. 130794 to A.W., 127563 to T.B, PZ00P3_136651 to P-E.C, and PP00P3_139205 to S.B.) and by the Germaine de Stael program (TRANS- BIO 26510SG) and EMBO Short Term Fellowship (to SK on REFUGE Platform). Part of this work was conducted on the Rice Functional genomics Platform (REFUGE) funded by Agropolis Fondation, in Montpellier, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Emmanuel Courty.

Electronic supplementary material

ESM 1

(PDF 6749 kb)

ESM 2

(PDF 566 kb)

ESM 3

(DOCX 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koegel, S., Mieulet, D., Baday, S. et al. Phylogenetic, structural, and functional characterization of AMT3;1, an ammonium transporter induced by mycorrhization among model grasses. Mycorrhiza 27, 695–708 (2017). https://doi.org/10.1007/s00572-017-0786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-017-0786-8

Keywords

Navigation