Skip to main content
Log in

The exudate from an arbuscular mycorrhizal fungus induces nitric oxide accumulation in Medicago truncatula roots

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) is a signaling molecule involved in plant responses to abiotic and biotic stresses. While there is evidence for NO accumulation during legume nodulation, almost no information exists for arbuscular mycorrhizas (AM). Here, we investigated the occurrence of NO in the early stages of Medicago truncatulaGigaspora margarita interaction, focusing on the plant response to fungal diffusible molecules. NO was visualized in root organ cultures and seedlings by confocal microscopy using the specific probe 4,5-diaminofluorescein diacetate. Five-minute treatment with the fungal exudate was sufficient to induce significant NO accumulation. The specificity of this response to AM fungi was confirmed by the lack of response in the AM nonhost Arabidopsis thaliana and by analyzing mutants impaired in mycorrhizal capacities. NO buildup resulted to be partially dependent on DMI1, DMI2, and DMI3 functions within the so-called common symbiotic signaling pathway which is shared between AM and nodulation. Significantly, NO accumulation was not induced by the application of purified Nod factor, while lipopolysaccharides from Escherichia coli, known to elicit defense-related NO production in plants, induced a significantly different response pattern. A slight upregulation of a nitrate reductase (NR) gene and the reduction of NO accumulation when the enzyme is inhibited by tungstate suggest NR as a possible source of NO. Genetic and cellular evidence, therefore, suggests that NO accumulation is a novel component in the signaling pathway that leads to AM symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akashi R, Kawano T, Hashiguchi M, Kutsuna Y, Hoffmann-Tsay SS, Hoffmann F (2003) Super roots in Lotus corniculatus: a unique tissue culture and regeneration system in a legume species. Plant Soil 255:27–33

    Article  CAS  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:750–751

    Article  Google Scholar 

  • Ané JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C, Lévy J, Debellé F, Baek JM, Kalo P, Rosenberg C, Roe BA, Long SR, Dénarié J, Cook DR (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303:1364–1367

    Article  PubMed  Google Scholar 

  • Baudouin E, Pieuchot L, Engler G, Pauly N, Puppo A (2006) Nitric oxide is formed in Medicago truncatula–Sinorhizobium meliloti functional nodules. Mol Plant Microbe Interact 19:970–975

    Article  PubMed  CAS  Google Scholar 

  • Bécard G, Fortin A (1988) Early events of vesicular–arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Article  Google Scholar 

  • Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226

    Article  PubMed  Google Scholar 

  • Besson-Bard A, Courtois C, Gauthier A, Dahan J, Dobrowolska G, Jeandroz S, Pugin A, Wendehenne D (2008a) Nitric oxide in plants: production and cross-talk with Ca2+ signaling. Mol Plant 1:218–228

    Article  CAS  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008b) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  CAS  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:1–11

    Article  Google Scholar 

  • Bonfante P, Requena N (2011) Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 14:1–7

    Google Scholar 

  • Buée M, Rossignol M, Jauneau A, Ranjeva R, Bécard G (2000) The presymbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microbe Interact 13:693–698

    Article  PubMed  Google Scholar 

  • Chabaud M, Genre A, Sieberer BJ, Faccio A, Fournier J, Novero M, Barker DJ, Bonfante P (2011) Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis. New Phytol 189:347–355

    Article  PubMed  CAS  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    Article  PubMed  CAS  Google Scholar 

  • Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L (2006) Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J Exp Bot 57:581–588

    Article  PubMed  CAS  Google Scholar 

  • Correa-Aragunde N, Lombardo C, Lamattina L (2008) Nitric oxide: an active molecule that modulates cellulose synthesis in tomato roots. New Phytol 179:247–249

    Article  Google Scholar 

  • Del Giudice J, Cam Y, Damiani I, Fung-Chat F, Meilhoc E, Bruand C, Brouquisse R, Puppo A, Boscari A (2011) Nitric oxide is required for an optimal establishment of the Medicago truncatulaSinorhizobium meliloti symbiosis. New Phytol. doi:10.1111/j.1469-8137.2011.03693.x

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:525–527

    Article  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  PubMed  CAS  Google Scholar 

  • Endre G, Kereszt A, Kevei Z, Mihacea S, Kaló P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    Article  PubMed  CAS  Google Scholar 

  • Foissner I, Wendehenne D, Langebartels C, Durner J (2000) In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J 23:817–824

    Article  PubMed  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Séjalon-Delmas N, Genre A, Jeandroz S, Bonfante P (2008) Plants and arbuscular mycorrhizal fungi: cues and communication in the early steps of symbiotic interactions. Adv Bot Res 46:181–219

    Article  CAS  Google Scholar 

  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT (2011) On the origin of nitric oxide. Trends Plant Sci 16:160–168

    Article  PubMed  CAS  Google Scholar 

  • Gutjahr C, Novero M, Guether M, Montanari O, Udvardi M, Bonfante P (2009) Presymbiotic factors released by the arbuscular mycorrhizal fungus Gigaspora margarita induce starch accumulation in Lotus japonicus roots. New Phytol 183:53–61

    Article  PubMed  CAS  Google Scholar 

  • Harper JE, Nicholas JC (1978) Nitrogen metabolism of soybeans. I. Effect of tungstate on nitrate utilization, nodulation and growth. Plant Physiol 62:662–664

    Article  PubMed  CAS  Google Scholar 

  • Horchani F, Prévot M, Boscari A, Evangelisti E, Meilhoc E, Bruand C, Raymond P, Boncompagni E, Aschi-Smiti S, Puppo A, Brouquisse R (2011) Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiol 155:1023–1036

    Article  PubMed  CAS  Google Scholar 

  • Journet EP, El-Gachtouli N, Vernoud V, de Billy F, Pichon M, Dedieu A, Arnould C, Morandi D, Barker DG, Gianinazzi-Pearson V (2001) Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Mol Plant Microbe Interact 14:737–748

    Article  PubMed  CAS  Google Scholar 

  • Kenneth JL, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method. Methods 25:402–408

    Article  Google Scholar 

  • Kosuta S, Chabaud M, Lougnon G, Gough C, Dénarié J, Barker DG, Bécard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962

    Article  PubMed  CAS  Google Scholar 

  • Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GE (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proc Natl Acad Sci 105:9823–9828

    Article  PubMed  CAS  Google Scholar 

  • Kuhn H, Küster H, Requena N (2010) Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula. New Phytol 185:716–733

    Article  PubMed  CAS  Google Scholar 

  • Lamotte O, Gould K, Lecourieux D, Sequeira-Legrand A, Lebrun-Garcia A, Durner J, Pugin A, Wendehenne D (2004) Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiol 135:516–529

    Article  PubMed  CAS  Google Scholar 

  • Leitner M, Vandelle E, Gaupels F, Bellin D, Delledonne M (2009) NO signals in the haze: nitric oxide signalling in plant defence. Curr Opin Plant Biol 12:451–458

    Article  PubMed  CAS  Google Scholar 

  • Lévy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ané JM, Lauber E, Bisseling T, Dénarié J, Rosenberg C, Debellé F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364

    Article  PubMed  Google Scholar 

  • Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63

    Article  PubMed  CAS  Google Scholar 

  • Messinese E, Mun JH, Yeun LH, Jayaraman D, Rougé P, Barre A, Lougnon G, Schornack S, Bono JJ, Cook DR, Ané JM (2007) A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula. Mol Plant Microbe Interact 20:912–921

    Article  PubMed  CAS  Google Scholar 

  • Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA, Oldroyd GE, Long SR (2004) A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. Proc Natl Acad Sci USA 101:4701–4705

    Article  PubMed  CAS  Google Scholar 

  • Moche M, Stremlau S, Hecht L, Göbel C, Feussner I, Stöhr C (2010) Effect of nitrate supply and mycorrhizal inoculation on characteristics of tobacco root plasma membrane vesicles. Planta 231:425–436

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee A, Ané JM (2011) Germinating spore exudates from arbuscular mycorrhizal fungi: molecular and developmental responses in plants and their regulation by ethylene. Mol Plant Microbe Interact 24:260–270

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagata M, Ei-ichi Murakami E, Shimoda Y, Shimoda-Sasakura F, Kucho K, Suzuki A, Abe M, Higashi S, Uchiumi T (2008) Expression of a class 1 hemoglobin gene and production of nitric oxide in response to symbiotic and pathogenic bacteria in Lotus japonicus. Mol Plant Microbe Interact 21:1175–1183

    Article  PubMed  CAS  Google Scholar 

  • Nagata M, Hashimoto M, Ei-ichi Murakami E, Shimoda Y, Shimoda-Sasakura F, Ken-ichi Kucho K, Suzuki A, Abe M, Higashi S, Uchiumi T (2009) A possible role of class 1 plant hemoglobin at the early stage of legume–rhizobium symbiosis. Plant Signal Behav 4:202–204

    Article  PubMed  CAS  Google Scholar 

  • Nakatsubo N, Kojima H, Kikuchi K, Nagoshi H, Hirata Y, Maeda D, Imai Y, Irimura T, Nagano T (1998) Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins. FEBS Lett 427:263–266

    Article  PubMed  CAS  Google Scholar 

  • Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P (2007) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144:673–681

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot 53:1237–1247

    Article  PubMed  CAS  Google Scholar 

  • Oláh B, Brière C, Bécard G, Dénarié J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207

    Article  PubMed  Google Scholar 

  • Oldroyd GE, Downie JA (2006) Nuclear calcium changes at the core of symbiosis signalling. Curr Opin Plant Biol 9:351–357

    Article  PubMed  CAS  Google Scholar 

  • Oldroyd GE, Harrison MJ, Paszkowski U (2009) Reprogramming plant cells for endosymbiosis. Science 324:753–754

    Article  PubMed  CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  PubMed  CAS  Google Scholar 

  • Pii Y, Crimi M, Cremonese G, Spena A, Pandolfini T (2007) Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biol 7:21

    Article  PubMed  Google Scholar 

  • Shimoda Y, Nagata M, Suzuki A, Abe M, Sato S, Kato T, Tabata S, Higashi S, Uchiumi T (2005) Symbiotic rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus. Plant Cell Physiol 46:99–107

    Article  PubMed  CAS  Google Scholar 

  • Siciliano V, Genre A, Balestrini R, Cappellazzo G, DeWitt P, Bonfante P (2007) Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus. Plant Physiol 144:1455–1466

    Article  PubMed  CAS  Google Scholar 

  • Stöhr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plants roots. J Exp Bot 57:463–470

    Article  PubMed  Google Scholar 

  • Tamasloukht M, Séjalon-Delmas N, Kluever A, Jauneau A, Roux C, Bécard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478

    Article  PubMed  CAS  Google Scholar 

  • Van Baarlen P, Staats M, Van Kan JAL (2004) Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica. Mol Plant Pathol 5:559–574

    Article  Google Scholar 

  • Vieweg MF, Hohnjec N, Kǘster H (2005) Two genes encoding different truncated hemoglobins are regulated during root nodule and arbuscular mycorrhiza symbioses of Medicago truncatula. Planta 220:757–766

    Article  PubMed  CAS  Google Scholar 

  • Weidmann S, Sanchez L, Descombin J, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V (2004) Fungal elicitation of signal transduction-related plant genes precedes mycorrhiza establishment and requires the dmi3 gene in Medicago truncatula. Mol Plant Microbe Interact 17:1385–1393

    Article  PubMed  CAS  Google Scholar 

  • Wendehenne D, Durner J, Klessig DF (2004) Nitric oxide: a new player in plant signalling and defence responses. Curr Opin Plant Biol 7:449–455

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto A, Katou S, Yoshioka H, Doke N, Kawakita K (2003) Nitrate reductase, a nitric oxide-producing enzyme: induction by pathogen signals. J Gen Plant Pathol 69:218–229

    Article  CAS  Google Scholar 

  • Yamamoto A, Katou S, Yoshioka H, Doke N, Kawakita K (2004) Involvement of nitric oxide generation in hypersensitive cell death induced by elicitin in tobacco cell suspension culture. J Gen Plant Pathol 70:85–92

    Article  CAS  Google Scholar 

  • Yamamoto-Katou A, Katou S, Yoshioka H, Doke N, Kawakita K (2006) Nitrate reductase is responsible for elicitor-induced nitric oxide production in Nicotiana benthamiana. Plant Cell Physiol 47:726–735

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    Article  PubMed  CAS  Google Scholar 

  • Zeidler D, Zähringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101:15811–15816

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Mireille Chabaud and David Barker for kindly providing root organ cultures and seeds of M. truncatula and for fruitful discussion and to Allan Downie for the Nod factor. The research was supported by a university grant (60%) to L.L. and by a grant from the SOILSINK Project (FISR) and the project Converging Technologies-BioBITs, funded by CIPE-Regione Piemonte to P.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Lanfranco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Histochemical analysis of transgenic M. truncatula roots carrying the MtENOD11 pro-GUS fusion construct treated with fungal exudate (a and c) and sterile water (b and d). Fungal exudate treatment induced GUS activity in patches of cortical cells in the young differentiated zone of lateral roots (a) and occasionally in epidermal cells and root hairs (c). In the corresponding zone of control roots treated with sterile water, GUS staining was limited to the vascular tissues (b, d). Bars = 700 μm (a and b), 60 μm (c and d). v vascular tissues, c cortex, e epidermis. (JPEG 304 kb) (JPEG 304 kb)

Figure S2

Root meristems (a) and emergences of lateral roots (b) of a nonmycorrhizal root after DAF-2DA staining, and root meristems (c) and emergences of lateral roots (d) of a nonmycorrhizal root after treatment with the NO scavenger cPTIO and DAF-2DA staining. Bars = 700 μm (a), 80 μm (b), 800 μm (c) and 100 μm (d). (JPEG 243 kb) (JPEG 243 kb)

Table S1

Mean and standard deviation values for data presented in Fig. 3 (DOC 27 kb) (DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calcagno, C., Novero, M., Genre, A. et al. The exudate from an arbuscular mycorrhizal fungus induces nitric oxide accumulation in Medicago truncatula roots. Mycorrhiza 22, 259–269 (2012). https://doi.org/10.1007/s00572-011-0400-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-011-0400-4

Keywords

Navigation