Skip to main content

Advertisement

Log in

Effect of controlled inoculation with specific mycorrhizal fungi from the urban environment on growth and physiology of containerized shade tree species growing under different water regimes

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The aim of this work was to evaluate the effects of selected mycorrhiza obtained in the urban environment on growth, leaf gas exchange, and drought tolerance of containerized plants growing in the nursery. Two-year-old uniform Acer campestre L., Tilia cordata Mill., and Quercus robur L. were inoculated with a mixture of infected roots and mycelium of selected arbuscular (maple, linden) and/or ectomycorrhiza (linden, oak) fungi and grown in well-watered or water shortage conditions. Plant biomass and leaf area were measured 1 and 2 years after inoculation. Leaf gas exchange, chlorophyll fluorescence, and water relations were measured during the first and second growing seasons after inoculation. Our data suggest that the mycelium-based inoculum used in this experiment was able to colonize the roots of the tree species growing in the nursery. Plant biomass was affected by water shortage, but not by inoculation. Leaf area was affected by water regime and, in oak and linden, by inoculation. Leaf gas exchange was affected by inoculation and water stress. V cmax and J max were increased by inoculation and decreased by water shortage in all species. F v/F m was also generally higher in inoculated plants than in control. Changes in PSII photochemistry and photosynthesis may be related to the capacity of inoculated plants to maintain less negative leaf water potential under drought conditions. The overall data suggest that inoculated plants were better able to maintain physiological activity during water stress in comparison to non-inoculated plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aasamaa K, Sõber A, Hartung W, Niinemets U (2004) Drought acclimation of two deciduous tree species of different layers in a temperate forest canopy. Trees 18(1):93–101

    Article  Google Scholar 

  • Abrams MD (1990) Adaptations and responses to drought in Quercus species of North America. Tree Physiol 7:227–238

    Article  PubMed  Google Scholar 

  • Agerer R (1987–1998) Colour atlas of ectomycorrhizae. Einhorn-Verlag, Germany

    Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Allen MF (1982) Influence of vesicular–arbuscular mycorrhizae on water movement through Bouteloua gracilis (H.B.K.) Lag ex Steud. New Phytol 91:191–196

    Article  Google Scholar 

  • Allen MF, Smith WK, Moore TS Jr, Christensen M (1981) Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis H.B.K. New Phytol 88:683–693

    Article  Google Scholar 

  • Allen MF, Allen EB, Gomez-Pompa A (2005) Effects of the mycorrhizae and non-target organisms on restoration of a seasonal tropical forest in Qunitana Roo, Mexico: factors limiting tree establishment. Restor Ecol 13:325–333

    Article  Google Scholar 

  • Appleton B, Koci J, French S, Lestyan M, Harris R (2003) Mycorrhizal fungal inoculation of established street trees. J Arboric 29(2):107–110

    Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Augé RM, Schekel KA, Wample RL (1986) Osmotic adjustment in leaves of VA mycorrhizal nonmycorrhizal rose plants in response to drought stress. Plant Physiol 82:765–770

    Article  PubMed  PubMed Central  Google Scholar 

  • Bainard LD, Klironomos JN, Gordon AM (2011) The mycorrhizal status and colonization of 26 tree species growing in urban and rural environments. Mycorrhiza 21:91–96

    Article  PubMed  Google Scholar 

  • Bañon S, Ochoa J, Franco JA, Alarcón JJ, Sanchez Blanco MJ (2006) Hardening of oleander seedlings by deficit irrigation and low air humidity. Environ Exp Bot 56:36–43

    Article  Google Scholar 

  • Barea JM, Gryndler M, Lemanceau P, Schüepp H, Azcón R (2002) The rizosphere of mycorrhizal plants. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhauser Verlag, Switzerland, pp 1–18

    Google Scholar 

  • Berta G, Trotta A, Fusconi A, Hooker JE, Munro M, Atkinson D, Giovannetti M, Morini S, Fortuna P, Tisserant B, Gianinazzi-Perason V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol 15:281–293

    Article  CAS  PubMed  Google Scholar 

  • Bethlenfalvey GJ, Ulrich JM, Brown MS (1985) Plant response to mycorrhizal fungi: host, endophyte and soil effects. Soil Sci Soc Am J 49:1164–1168

    Article  Google Scholar 

  • Bryla DR, Duniway JM (1997) Effects of mycorrhizal infection on drought tolerance and recovery in safflower and wheat. Plant Soil 197:95–103

    Article  CAS  Google Scholar 

  • Bundrett M (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Bundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture (edited by Lynch P). Australian Center for International Agricultural Research, Canberra

    Google Scholar 

  • Calvente R, Cano C, Ferrol N, Azcón-Aguilar C, Barea JM (2004) Analysing natural diversity of arbuscular mycorrhizal fungi in olive tree (Olea europaea L.) plantations and assessment of the effectiveness of native fungal isolates as inoculants for commercial cultivars of olive plantlets. Appl Soil Ecol 26:11–19

    Article  Google Scholar 

  • Carpio LA, Davies FT Jr, Arnold MA (2005) Arbuscular mycorrhizal fungi, organic and inorganic controller-release fertilizers: effect on growth and leachate of container-grown bush morning glory (Ipomoea carnea ssp. fistulosa) under high production temperatures. J Amer Soc Hort Sci 130(1):131–139

    Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field? Photosynthesis and growth. Ann Bot 89(7):907–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corkidi L, Allen EB, Merhaut D, Allen MF, Downer J, Bohn J, Evans M (2004) Assessing the infectivity of commercial mycorrhizal inoculants in plant nursery conditions. J Environ Hortic 22(3):149–154

    Google Scholar 

  • Corkidi L, Allen EB, Merhaut D, Allen MF, Downer J, Bohn J, Evans M (2005) Effectiveness of commercial mycorrhizal inoculants on the growth of Liquidambar stryraciflua in plant nursery conditions. J Environ Hortic 23(2):72–76

    Google Scholar 

  • Costa e Silva F, Shvaleva A, Maroco JP, Almeida MH, Chaves MM, Pereira JS (2004) Responses to water stress in two Eucalyptus globosus clones differing in drought tolerance. Tree Physiol 24(10):1165–1172

    Article  PubMed  Google Scholar 

  • Cruz C, Green JJ, Watson CA, Wilson F, Martins-Loução MA (2004) Functional aspects of root architecture and mycorrhizal inoculation with respect of nutrient uptake capacity. Mycorriza 14:171–178

    Article  Google Scholar 

  • Davies FT Jr (2000) Benefits and opportunities with mycorrhizal fungi in nursery propagation and production systems. Comb Proc—Int Plant Propag Soc 50:482–489

    Google Scholar 

  • Davies FT Jr, Potter JR, Linderman RG (1993) Drought resistance of mycorrhizal pepper plants independent of leaf P-concentration–response in leaf gas exchange and water relations. Plysiol Plant 87:45–53

    Article  CAS  Google Scholar 

  • Davies FT Jr, Saraiva Grossi JA, Carpio L, Estrada-Luna AA (2000) Colonization and growth effects of the mycorrhizal fungus Glomus intraradicies in a commercial nursery container production system. J Environ Hortic 18(4):247–251

    Google Scholar 

  • Dixon RK, Wright GM, Behrns GT, Teskey RO, Hinckley TM (1980) Water deficits and root growth of ectomycorrhizal white oak seedlings. Can J For Res 10:545–548

    Article  Google Scholar 

  • Drunasky N, Struve DK (2005) Quercus macrocarpa and Quercus prinus physiological and morphological responses to drought stress and their potential for urban forestry. Urban For Urban Green 4(1):13–22

    Article  Google Scholar 

  • Duan X, Neuman DS, Reiber JM, Green CD, Saxton AM, Augé RM (1996) Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J Exp Bot 47:1541–1550

    Article  CAS  Google Scholar 

  • Ebel RC, Stodola AJW, Duan X, Augé RM (1994) Non-hydraulic root-to-shoot signaling in mycorrhizal and non-mycorrhizal sorghum exposed to partial soil drying or root severing. New Phytol 127:495–505

    Article  Google Scholar 

  • Ebel RC, Welbaum GE, Gunatilaka M, Nelson T, Augé RM (1996) Arbuscular mycorrhizal symbiosis and non-hydraulic signaling of soil drying in Vigna unguiculata (L) Walp. Mycorrhiza 6:119–127

    Article  Google Scholar 

  • Eissenstat DM, Graham JH, Syvertsen JP, Drouillard DL (1993) Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus status. Ann Bot 71:1–10

    Article  CAS  Google Scholar 

  • Entry JA, Rygiewicz PT, Watrud LS, Donnelly PK (2002) Influence of adverse soil conditions on the formation and function of arbuscular mycorrhizas. Adv Environ Res 7:123–138

    Article  CAS  Google Scholar 

  • Erland S, Söderström B (1990) Effects of liming on ectomycorrhizal fungi infecting Pinus sylvestris L. New Phytol 115:675–682

    Article  CAS  Google Scholar 

  • Ferrini F, Nicese FP (2002) Response of English oak (Quercus robur L.) to biostimulants application in the urban environment. J Arboric 28:70–75

    Google Scholar 

  • Ferrini F, Fini A, Marasco PL, Pennati L, Sani L (2008) How to select trees that will thrive in the urban environments, given differences in urban sites, species attribute, management requirements and global change. Proceedings of ISAAC, 9–14 May, Brisbane, Australia

  • Fini A, Matti GB, Ferrini F (2008) Physiological responses to different irrigation regimes for shade trees grown in container. Adv Hortic Sci 22(1):13–20

    Google Scholar 

  • Fini A, Ferrini F, Frangi P, Amoroso G, Piatti R (2009) Withholding irrigation during the establishment phase affected growth and physiology of Norway maple (Acer platanoides L.) and linden (Tilia spp.). Arboric Urb For 35(5):241–251

    Google Scholar 

  • Flexas J, Ribas-Carbó M, Bota J, Galmés J, Henkle M, Martinez-Cañellanes S (2006) Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol 172:73–82

    Article  CAS  PubMed  Google Scholar 

  • Franco JA, Martinez-Sanchez JJ, Fernandez JA, Bañón S (2006) Selection and nursery production of ornamental plants for landscaping and xerogardening in semi-arid environments. J Hortic Sci Biotechnol 81(1):3–17

    Article  Google Scholar 

  • Garbaye J, Churin JL (1996) Effect of ectomycorrhizal inoculation at planting on growth and foliage quality of Tilia tomentosa. J Arboric 22(1):29–34

    Google Scholar 

  • Gemma JN, Koske RE, Roberts EM, Jackson N, De Antonis K (1997) Mycorrhizal fungi improve drought resistance in creeping bentgrass. J Turfgrass Sci 73:15–29

    Google Scholar 

  • Gianinazzi S, Gianinazzi-Pearson V (1992) Cytology, histochemistry and immunocytochemistry as tools for studying structure and function in endomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology—vol 24. Academic, London, pp 109–139

    Google Scholar 

  • Gilman EF (2001) Effect of nursery production method, irrigation, and inoculation with mycorrhizae-forming fungi on establishment of Quercus virginiana. J Arboric 27:30–38

    Google Scholar 

  • Giovannetti M, Fontana A (1985) Mycelial strands in some species of Boletus: B. pinicola Vitt. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 641–645

    Google Scholar 

  • Giovannetti M, Gianinazzi-Pearson V (1994) Biodiversity in arbuscular mycorrhizal fungi. Mycol Res 98:705–715

    Article  Google Scholar 

  • Goicoechea N, Antolin MC, Sanchez-Diaz M (1997) Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant 100:989–997

    Article  CAS  Google Scholar 

  • Graham JH, Syvertsen JP (1984) Influence of vesicular–arbuscular mycorrhiza on the hydraulic conductivity of roots of two Citrus rootstocks. New Phytol 97:277–284

    Article  Google Scholar 

  • Gu M, Rom CR, Robbins JA, Oosterhuis DM (2007) Effect of water deficit on gas exchange, osmotic solutes, leaf abscission, and growth of four birch genotypes (Betula L.) under a controlled environment. Hortic Sci 42(6):1383–1391

    Google Scholar 

  • Guidi L, Degl’Innocenti E, Remorini D, Massai R, Tattini M (2008) Interactions of water stress and solar irradiance on the physiology and biochemistry of Ligustrum vulgare. Tree Physiol 28:873–883

    Article  CAS  PubMed  Google Scholar 

  • Habte M (2006) The roles of arbuscular mycorrhizas in plant and soil health. In: Uphoff N, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. Taylor & Francis, New York, pp 129–147

    Chapter  Google Scholar 

  • Ijdo M, Cranenbrouck S, Declerck S (2011) Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21:1–16. doi:10.1007/s00572-010-0337-z

    Article  CAS  PubMed  Google Scholar 

  • Janoušková M, Seddar P, Mrnka L, van Tuinen D, Dvořáčková A, Tollot M, Gianinazzi-Pearson V, Vosátka M, Gollotte A (2009) Development and activity of Glomus intraradices as affected by co-existence with Glomus claroideum in one root system. Mycorrhiza 19:393–402

    Article  PubMed  Google Scholar 

  • Jifon JL, Syvertsen JP (2003) Moderate shade can increase net gas exchange and reduce photoinibition in citrus leaves. Tree Physiol 23:119–127

    Article  PubMed  Google Scholar 

  • Johnson NC, Pfleger FL (1992) Vesicular arbuscular mycorrhizae and culture stresses. In: Bethlenfalvay JG, Lindermann R (eds) Mycorrhiza in sustainable agriculture. American Society of Agronomy, Crop Science Society of America, Soil Society of America, Madison, pp 71–99

    Google Scholar 

  • Jones HG (1992) Plant and microclimate 2nd edition. Cambridge University Press, Cambridge, pp 95–98

    Google Scholar 

  • Kalafallah AA, Abo-Ghalia HH (2008) Effect of arbuscular mycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants subjected to short-term water stress, followed by recovery at different growth stages. J Appl Sci Res 4(5):559–569

    Google Scholar 

  • Klingeman WE, Augé RM, Flanagan PC (2002) Arbuscular mycorrhizal assessment of ornamental trees grown in Tennessee field soils. Hortic Sci 37(5):778–782

    Google Scholar 

  • Koide R (1993) Physiology of the mycorrhizal plant. Adv Plant Pathol 9:33–54

    Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–505

    Article  Google Scholar 

  • Kothari SK, Marschner H, George E (1990) Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations. New Phytol 116:303–311

    Article  Google Scholar 

  • Lamar RT, Davey CB (1988) Comparative effect of three Fraxinus pennsylvanica Marsh vesicular–arbuscular fungi in a high phosphorus nursery soil. New Phytol 109:171–181

    Article  Google Scholar 

  • Lawlor DW (2002) Limitation to photosynthesis in water stressed leaves: stomata vs metabolism and the role of ATP. Ann Bot 89:871–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21(2):71–90

    Article  PubMed  Google Scholar 

  • Lemoine D, Peltier JP, Marigo G (2001) Comparative studies of the water relations and the hydraulic characteristics in Fraxinus excelsior, Acer pseudoplatanus and A. opalus trees under soil water contrasted conditions. Ann For Sci 58:723–731

    Article  Google Scholar 

  • LeTacon F, Alvarez IF, Bouchard D, Henrion B, Jackson RM, Luff S, Parlade JI, Pera J, Stenstorm E, Villeneuve N, Walker C (1992) Variations in field response of forest trees to nursery ectomycorrhizal inoculation in Europe. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, UK, pp 119–134

    Google Scholar 

  • Levitt J (1980) Response of plant to environmental stresses. II. Water, radiation, salt and other stresses. Academic, New York, pp 3–53

    Google Scholar 

  • Linderman RG, Davies EA (2004) Varied response of marigold (Tagetes spp.) genotypes to inoculation with different arbuscular mycorrhizal fungi. Sci Hortic 99:67–78

    Article  Google Scholar 

  • Liptay A, Sikkema P, Fonteno W (1998) Transplant growth control through water deficit stress—a review. Hortic Technol 8:540–543

    Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what they can tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401

    Article  CAS  PubMed  Google Scholar 

  • Lyr H, Fiedler HJ, Tranquillini W (1992) Physiologie und ökologie der gehölze. Gustav Fisher, Stuttgard, p 613

    Google Scholar 

  • Marin M (2006) Arbuscular mycorrhizal inoculation in nursery practice. In: Rai MK (ed) handbook of microbial biofertilizers. Haworth, Binghamton, pp 289–325

    Google Scholar 

  • Martin CA, Stutz JC (1994) Growth of Argentine mesquite inoculated with vesicular–arbuscular mycorrhizal fungi. J Arboric 20:134–138

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives and objective measurement of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Medrano H, Escalona JM, Bota J, Gulias J, Flexas J (2002) Regulation of photosynthesis in C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot 89:895–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menkis A, Vasiliauskas R, Taylor AFS, Stenlid J, Finley R (2005) Fungal communities in mycorrhizal roots of conifer seedlings in forest nurseries under different cultivation systems, assessed by morphotyping, direct sequencing and mycelial isolation. Mycorrhiza 16:33–41

    Article  PubMed  Google Scholar 

  • Nadian H, Smith SE, Alson AM, Murray RS (1996) The effect of soil compaction on growth and P uptake by Trifolium subterraneum: interactions with mycorrhizal colonization. Plant Soil 182:39–49

    Article  CAS  Google Scholar 

  • Nadian H, Smith SE, Alson AM, Murray RS (1997) Effects of soil compaction on plant growth, phosphorus uptake and morphological characteristics of vesicular–arbuscular mycorrhizal colonization of Trifolium subterraneum. New Phytol 135:303–311

    Article  Google Scholar 

  • Navarro A, Sanchez-Blanco MJ, Morte A, Bañón S (2009) The influence of mycorrhizal inoculation and paclobutrazol on water and nutritional status of Arbutus unedo L. Environ Exp Bot 66(3):362–371

    Article  CAS  Google Scholar 

  • Navarro-Garcia A, Bañon Arias S, Morte A, Sanchez-Blanco MJ (2011) Effects of nursery preconditioning through mycorrhizal inoculation and drought in Arbutus unedo L. plants. Mycorrhiza 21:53–64. doi:10.1007/s00572-010-0310-x

    Article  PubMed  Google Scholar 

  • Newman SE, Davies FT Jr (1988) High root-zone temperature, mycorrhizal fungi, water relations and root hydraulic conductivity of container-grown woody plants. J Am Soc Hortic Sci 113:138–146

    Google Scholar 

  • Newton AC, Pigott CD (1991) Mineral nutrition and mycorrhizal infection of seedling oak and birch. II. The effects of fertilizers on growth, mineral nutrition and ectomycorrhizal infection. New Phytol 117:45–52

    Article  CAS  Google Scholar 

  • Osonubi O, Bakare ON, Mulongoy K (1992) Interaction between drought stress and vesicular–arbuscular mycorrhiza on the growth of Faidherbia albida (Syn Acacia albida) and Acacia nilotica in sterile and non-sterile soils. Biol Fertil Soils 18:55–59

    Article  Google Scholar 

  • Pinior A, Grunewaldt-Stöcker G, von Alten H, Strasser RJ (2005) Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza 15:596–605

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55(403):1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Quoreshi AM (2008) The use of mycorrhizal biotechnology in restoration of disturbed ecosystem. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 303–320

    Chapter  Google Scholar 

  • Requena N, Jeffries P, Barea JM (1996) Assessment of natural mycorrhizal potential in a desertified semiarid ecosystem. Appl Environ Microbiol 62(3):842–847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rincon A, Parlade J, Pera J (2007) Influence of fertilisation method in controlled ectomycorrhizal inoculation of two Mediterranean pines. Ann For Sci 64:577–583

    Article  CAS  Google Scholar 

  • Ruiz-Sanchez MC, Domingo R, Torrecillas A, Pérez-Pastor A (2000) Water stress preconditioning to improve drought resistance in young apricot plants. Plant Sci 156:245–251

    Article  CAS  PubMed  Google Scholar 

  • Sammons JD, Struve DK (2008) Monitoring effective container capacity: a method for reducing over-irrigation in container production systems. J Environ Hortic 26(1):19–23

    Google Scholar 

  • Schansker G, Tóth SZ, Strasser RJ (2006) Dark-recovery of the Chl-a fluorescence transient (OJIP) after light adaption: the qT-component of non photochemical quenching is related to an activated photosystem I acceptor side. Biochim Biophys Acta 1757:787–797

    Article  CAS  PubMed  Google Scholar 

  • Scholander PF, Hammel HT, Hemmingsen EA, Bradstreet ED (1964) Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. PNAS 52:119–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Shenk NC, Perez Y (1990) Manual for identification of VA mycorrhizal fungi. Synergistic Publications, Gainesville, p 250

    Google Scholar 

  • Sieverding E (1991) Vesicular–arbuscular mycorrhiza management in tropical agrosystems. Deutsche GTZ, GmbH Eschborn, 371 pp

    Google Scholar 

  • Simpson D, Daft MJ (1990) Interactions between water stress and different mycorrhizal inocula on plant growth and mycorrhizal development in maize and sorghum. Plant Soil 121:179–186

    Article  Google Scholar 

  • Smith SE (1982) Inflow of phosphate into mycorrhizal and non-mycorrhizal plants of Trifolium subterraneum at different levels of soil phosphate. New Phytol 90:293–303

    Article  CAS  Google Scholar 

  • Stabler LB, Martin CA, Stutz JC (2001) Effect of urban expansion on arbuscular mycorrhizal fungal mediation of landscape tree growth. J Arboric 27(4):193–202

    Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Iichael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M (ed) Probing photosynthesis: mechanisms, regulation and adaptation. Taylor & Francis, London, pp 445–483

    Google Scholar 

  • Sylvia DM, Alagely AK, Kane ME, Philman NL (2003) Compatible host/mycorrhizal fungal combinations for micropropagated sea oats. Mycorrhiza 13:177–183

    Article  PubMed  Google Scholar 

  • Theodorou C, Reddel P (1991) In vitro sysnthesis of ectomycorrhiza on Casuarinaceae with a range of ectomycorrhizal fungi. New Phytol 118:279–288

    Article  Google Scholar 

  • Timonen S, Kauppinen P (2008) Mycorrhizal colonisation patterns of Tilia trees in street, nursery and forest habitats in southern Finland. Urb For Urb Green 7:265–276

    Article  Google Scholar 

  • Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res 97(2):245–250

    Article  CAS  Google Scholar 

  • Tóth SZ, Schansker G, Strasser RJ (2007) A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photos Res 93:193–203

    Article  CAS  Google Scholar 

  • Turnbull MH, Whitehead D, Tissue DT, Schuster WSF, Brown KJ, Engel VC, Griffin KL (2002) Photosynthetic characteristics in canopies of Quercus rubra, Quercus prinus and Acer rubrum differ in response to soil water availability. Oecologia 130:515–524

    Article  PubMed  Google Scholar 

  • Valladares F, Pearcy RW (1997) Interactions between water stress, sun-shade acclimation, heat tolerance and photoinibition in sclerophyll Heteromeles arbutifolia. Plant Cell Environ 20:25–36

    Article  Google Scholar 

  • Van Iersel MW, Dove S, Kang JG, Burnett SE (2010) Growth and water use of petunia as affected by substrate water content and daily light integral. Hortic Sci 45(2):277–282

    Google Scholar 

  • Walker C (1983) Taxonomic concepts in the Endogonaceae: spore wall characteristics in species description. Mycotaxon 18:443–455

    Google Scholar 

  • Waller K, Raidl S, Agerer R (1983) Die ektomycorrhizen von Scleroderma citrinum. Z Mycol 59:141–153

    Google Scholar 

  • Weber G, Claus M (2000) The influence of chemical soil factors on the development of VA mycorrhizas of ash (Fraxinus excelsior L.) and sycamore (Acer pseudoplatanus L.) in pot experiments. J Plant Nutr Soil Sci 163:609–616

    Article  CAS  Google Scholar 

  • Wiseman PE, Wells CE (2009) Arbuscular mycorrhizal inoculation affects root development of Acer and Magnolia species. J Environ Hortic 27(1):70–79

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Regione Lombardia Project “Miglioramento delle tecniche produttive e della qualità del prodotto nel vivaismo ornamentale (TECPRO)” and Floricoltura San Donato-Grandi Trapianti Italiani, (S. Donato Milanese, Milan, Italy) for funding this experiment. Special acknowledgement goes to Dr. Jurgen Kutscheidt (MicoMax GmbH, Wuppertal, Germany) for the kind assistance during mycorrhiza selection and inoculum preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Fini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fini, A., Frangi, P., Amoroso, G. et al. Effect of controlled inoculation with specific mycorrhizal fungi from the urban environment on growth and physiology of containerized shade tree species growing under different water regimes. Mycorrhiza 21, 703–719 (2011). https://doi.org/10.1007/s00572-011-0370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-011-0370-6

Keywords

Navigation