Skip to main content
Log in

Mycorrhizal morphotyping and molecular characterization of Chondrogaster angustisporus Giachini, Castellano, Trappe & Oliveira, an ectomycorrhizal fungus from Eucalyptus

  • Short Note
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Chondrogaster angustisporus is a hypogeous ectomycorrhizal fungus described from fruiting bodies collected under Eucalyptus spp. in Brazil, Uruguay, and Australia. Due to its efficiency in promoting plant growth, we decided to characterize this fungus through mycorrhizal morphotyping and internal transcribed spacer (ITS) (rRNA) sequencing. DNA extracted from mycelium was amplified and sequenced using specific primers. Mycorrhizas were obtained aseptically and analyzed in terms of macroscopic and microscopic characteristics. When compared with other fungal DNA sequences available in the NBCI GenBank, the C. angustisporus sequence presented the highest similarity to an uncultured ectomycorrhizal fungus from the Seychelles. It also shows significant similarities to Gomphus, Ramaria, and Hysterangium species supporting the classification of Chondrogaster in the subclass Phallomycetidae in the gomphoid–phalloid group. The mycorrhizas were characterized by a narrow mantle with a single tissue layer densely arranged and organized as a net synenchyma with elongated hyphae. Interhyphal spaces were seen only in the external region where hyphae were more loosely organized. Bottle-shaped cystidia with bent necks were observed on the surface of the mantle. Emanating hyphae were larger than those in the mantle and presented a granular content. At regular intervals the hyphae were divided by septa with clamp connections. The Hartig net was of the common type, with typical palmetti and single hyphal rows and limited to the epidermal layer. The mycorrhizal description and the ITS sequence obtained are useful tools to identify this ectomycorrhizal fungus in culture and in association with Eucalyptus roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Agerer R (1987–1993) Colour atlas of ectomycorrhizae. Einhorn-Verlag Eduard Dietenberger, Schwäbisch Gmünd

    Google Scholar 

  • Altschul SF, Madden TL, Schaffon AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein data base search programs. Nucleic Acids Research 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez ML, Cerceda MC (2005) Chondrogaster angustisporus, nueva cita para Europa. Cryptogam, Mycol 26:113–122

    Google Scholar 

  • Bougher NL, Castellano MA (1993) Delimitation of Hymenogaster sensu stricto and four new segregate genera. Mycologia 85:273–293 doi:10.2307/3760462

    Article  Google Scholar 

  • Bougher NL, Lebel T (2001) Sequestrate (truffle-like) fungi of Australia and New Zealand. Aust Syst Bot 14:439–484 doi:10.1071/SB00002

    Article  Google Scholar 

  • Bougher NL, Syme K (1998) Fungi of Southern Australia. University of Western Australia Press, Nedlands

    Google Scholar 

  • Brundrett M, Bougher NL, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. ACIAR Monograph 32, Canberra

  • Castellano MA, Bougher NL (1994) Consideration of the taxonomy and biodiversity of Australian ectomycorrhizal fungi. Plant Soil 159:37–46

    Article  Google Scholar 

  • Castellano MA, Trappe JM, Maser Z, Maser C (1989) Key to spores and the genera of hypogeous fungi of North temperate forests, with special reference to animal mycophagy. Mad River, Eureka

    Google Scholar 

  • Dunn IS, Blattner FR (1987) Charon-36 to charon-40 multi enzyme, high-capacity, recombination deficient replacement vectors with polylinkers and polystuffers. Nucleic Acids Res 15:2677–2698 doi:10.1093/nar/15.6.2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118 doi:10.1111/j.1365-294X.1993.tb00005.x

    Article  CAS  PubMed  Google Scholar 

  • Giachini AJ, Oliveira VL, Castellano MA, Trappe JM (2000) Ectomycorrhizal fungi in Eucalyptus and Pinus plantations in southern Brazil. Mycologia 92:1166–1177 doi:10.2307/3761484

    Article  Google Scholar 

  • Giachini AJ, Souza LAB, Oliveira VL (2004) Species richness and seasonal abundance of ectomycorrhizal fungi in plantations of Eucalyptus dunnii and Pinus taeda in southern Brazil. Mycorrhiza 14:375–381

    Article  PubMed  Google Scholar 

  • Goodman DM, Durall DM, Trofymow JA, Berch SM (1996–1998) A manual of concise descriptions of North American ectomycorrhizae. Mycologue Publications, Sydney

    Google Scholar 

  • Hosaka K, Bates ST, Beever RE, Castellano MA, Colgan W, Dominguez LS et al (2006) Molecular phylogenetics of the gomphoid–phalloid fungi with an establishment of the new subclass Phallomycetidae and two new orders. Mycologia 98:949–959 doi:10.3852/mycologia.98.6.949

    Article  CAS  PubMed  Google Scholar 

  • Ingleby K, Mason PA, Last FT, Fleming LV (1990) Identification of ectomycorrhizas. Institute for Terrestrial Ecology, Natural Environmental Research Council, U.K. Res. Publ. No. 5, London

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 doi:10.1093/bib/5.2.150

    Article  CAS  PubMed  Google Scholar 

  • LASERGENE (1994) User’s guide: a manual for the Lasergene System. Madison. Biocomputing software for Windows, 253 p

  • Lima WP (1993) Impacto Ambiental do Eucalipto, 2nd edn. EDUSP, São Paulo

    Google Scholar 

  • Lu X, Malajczuk N, Brundett M, Dell B (1999) Fruiting of putative ectomycorrhizal fungi under blue gum (Eucalyptus globulus) plantations of different ages in Western Australia. Mycorrhiza 8:255–261 doi:10.1007/s005720050242

    Article  Google Scholar 

  • Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic fungi and soil bacteria. Phytopatology 59:153–163

    Google Scholar 

  • Midgley DJ, Saleeba JA, Stewart MI, Simpson AE, McGee PA (2007) Molecular diversity of soil basidiomycete communities in northern-central New South Wales, Australia. Mycol Res 111:370–378 doi:10.1016/j.mycres.2007.01.011

    Article  CAS  PubMed  Google Scholar 

  • Norkrans B (1949) Some mycorrhiza-forming Tricholoma species. Sven Bot Tidskr 43:485–490

    Google Scholar 

  • Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: anatomy and cell biology. NRC Research Press, Ottawa

    Google Scholar 

  • Rossi MJ (2006) Technology to the production of ectomycorrhizal fungi inoculants employing submerged cultivation in an airlift bioreactor, Ph.D. Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil (in Portuguese) (http://150.162.90.250/teses/PENQ0177.pdf)

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning—a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Souza LAB, Silva Filho GN, Oliveira VL (2004) Efficiency of ectomycorrhizal fungi on phosphorus uptake and growth promoting of eucalyptus. Pesquisa Agropecu Bras 39:349–355 in Portuguese

    Article  Google Scholar 

  • Tedersoo L, Suvi T, Beaver K, Koljalg U (2007) Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native Vateriopsis seychellarum (Dipterocarpaceae) and Intsia bijuga (Caesalpiniaceae) to the introduced Eucalyptus robusta (Myrtaceae), but not Pinus caribea (Pinaceae). New Phytol 175:321–333 doi:10.1111/j.1469-8137.2007.02104.x

    Article  CAS  PubMed  Google Scholar 

  • White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols—a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  • Yang CS, Wilcox HE (1983) Technique for observation of mycorrhizal development under monoxenic conditions. Can J Bot 62:251–254 doi:10.1139/b84-041

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge: the ‘Programa de Pós-Graduação em Ciência do Solo’, Dept. of Soil Science of the Federal University of Santa Maria, Brazil for facilities; the Brazilian ‘Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior’ (CAPES); and the ‘Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS)’ for the partial grants project number 0413215. They also wish to thank Dr. Admir J. Giachini, SBW do Brasil, Agrifloricultura Ltda., Holambra, SP, Brazil and Dr. Geoff Carr, London, UK, for reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lupatini, M., Bonnassis, P.A.P., Steffen, R.B. et al. Mycorrhizal morphotyping and molecular characterization of Chondrogaster angustisporus Giachini, Castellano, Trappe & Oliveira, an ectomycorrhizal fungus from Eucalyptus . Mycorrhiza 18, 437–442 (2008). https://doi.org/10.1007/s00572-008-0191-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-008-0191-4

Keywords

Navigation