Skip to main content
Log in

Gene expression of the ericoid mycorrhizal fungus Oidiodendron maius in the presence of high zinc concentrations

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

A heavy metal tolerant strain of the ericoid mycorrhizal species Oidiodendron maius, isolated from roots of Vaccinium myrtillus growing in soil heavily contaminated with zinc, was previously shown to tolerate high concentrations of zinc and cadmium ions in the growth medium. We have investigated the genetic basis of this fungal strain tolerance to high zinc concentrations by using an untargeted approach. From a cDNA library constructed by using mRNA from Zn-treated O. maius mycelia, 444 clones were randomly selected and 318 were sequenced. Sequence analysis identified 219 unique clones: 117 showed homology to previously identified genes, 26 matched unknown protein coding regions found in other organisms, and 76 were novel. Variation in the gene expression level after a 20-day treatment with high concentrations of Zn was monitored on 130 unigenes by reverse northern blot hybridisation. Sixteen unigenes were shown to be either up- (9) or down- (7) regulated. The putative function of these genes and their involvement in stress tolerance is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  Google Scholar 

  • Averbeck NB, Jensen ON, Mann M, Schagger H, Osiewacz HD (2000) Identification and characterization of PaMTH1, a putative O-methyltransferase accumulating during senescence of Podospora anserina cultures. Curr Genet 37:200–278

    Article  CAS  PubMed  Google Scholar 

  • Averbeck NB, Borghouts C, Hamann A, Specke V, Osiewacz HD (2001) Molecular control of copper homeostasis in filamentous fungi: increased expression of a metallothionein gene during aging of Podospora anserina. Mol Gen Genet 264:604–612

    Article  CAS  PubMed  Google Scholar 

  • Bardi L, Perotto S, Bonfante P (1999) Isolation and regeneration of protoplasts from two strains of the ericoid mycorrhizal fungus Oidiodendron maius: sensitivity to chemicals and heavy metals. Microbiol Res 154:105–111

    CAS  Google Scholar 

  • Bonfante P, Gianinazzi-Pearson V (1979) Ultrastructural aspects of endomycorrhizal in the Ericaceae. I. Naturally infected hair roots of Calluna vulgaris L. Hull. New Phytol 83:739–744

    Google Scholar 

  • Chiron H, Drouet A, Claudot AC, Eckerskorn C, Trost M, Heller W, Ernst D, Sandermann H Jr (2000) Molecular cloning and functional expression of a stress-induced multifunctional O-methyltransferase with pinosylvin methyltransferase activity from Scots pine (Pinus sylvestris L.). Plant Mol Biol 44:733–745

    Article  CAS  PubMed  Google Scholar 

  • Clemens S (2001) Molecular mechanism of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder J (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    Article  CAS  PubMed  Google Scholar 

  • Couture M, Fortin JA, Dalpé Y (1983) Oidiodendron griseum Robak: an endophyte of ericoid mycorrhiza in Vaccinium spp. New Phytol 95:375–380

    Google Scholar 

  • Cyrne L, Martins L, Fernandes L, Marinho HS yr (2003) Regulation of antioxidant enzymes gene expression in the yeast Saccharomyces cerevisiae during stationary phase. Free Radic Biol Med 34:385–393

    Article  CAS  PubMed  Google Scholar 

  • Dawe AL, McMains VC, Panglao M, Kasahara S, Chen B, Nuss DL (2003) An ordered collection of expressed sequences from Cryphonectria parasitica and evidence of genomic microsynteny with Neurospora crassa and Magnaporthe grisea. Microbiology 149:2373–2384

    Article  CAS  PubMed  Google Scholar 

  • De la Fuente JM, Ramirez-Rodriguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminium tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568

    Article  PubMed  Google Scholar 

  • Diener SE, Dunn-Coleman N, Foreman P, Houfek TD, Teunissen PJM, van Solingen P, Dankmeyer L, Mitchell TK, Ward M, Dean RA (2004) Characterization of the protein processing and secretion pathways in a comprehensive set of expressed sequence tags from Trichoderma reesei. FEMS Microbiol Lett 230:275–282

    Article  PubMed  Google Scholar 

  • Douglas GC, Heslin MC, Reid C (1989) Isolation of Oidiodendron maius from Rhododendron and ultrastructural characterisation of synthesized mycorrhizas. Can J Bot 67:2206–2212

    Google Scholar 

  • Dumas R, Biou V, Halgand F, Douce R, Duggleby RG (2001) Enzymology, structure, and dynamics of acetohydroxy acid isomeroreductase. Acc Chem Res 34:399–408

    Article  CAS  PubMed  Google Scholar 

  • Edskes HK, Ohtake Y, Wickner RB (1998) Mak21p of Saccharomyces cerevisiae, a homolog of human CAATT-binding protein, is essential for 60 S ribosomal subunit biogenesis. J Biol Chem 273:28912–28920

    Article  CAS  PubMed  Google Scholar 

  • Franken O, Requena N (2001) Analysis of gene expression in arbuscular mycorrhizas: new approaches and challenges. New Phytol 150:517–523

    Article  CAS  Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxics metals. New Phytol 124:25–60

    CAS  Google Scholar 

  • Garay-Arroyo A, Lledias F, Hansberg W, Covarrubias AA (2003) Cu, Zn-superoxide dismutase of Saccharomyces cerevisiae is required for resistance to hyperosmosis. FEBS Lett 539:68–72

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi-Pearson V, van Tuinen D, Dumas-Gaudot E, Dulieu H (2001) Exploring the genome of glomalean fungi. In: Hock B (ed) The Mycota IX. Springer, Berlin Heidelberg New York, pp 1–17

  • Greszta J (1988) The effect of dusts from electro-filters of different industrial works on forest ecosystems. Scientific Papers of Krakow Agricultural Academy 18:3–21

    Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 1153–1163

  • Hall JL (2002) Cellular mechanism for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hambleton S, Currah RS (1997) Fungal endophytes from the roots of alpine and boreal Ericaceae. Can J Bot 75:1570–1581

    Google Scholar 

  • Hayashi K, Schoonbeek HJ, De Waard MA (2002) Bcmfs1, a novel major facilitator superfamily transporter from Botrytis cinerea, provides tolerance towards the natural toxic compounds camptothecin and cercosporin and towards fungicides. Appl Environ Microbiol 68:4996–5004

    Article  CAS  PubMed  Google Scholar 

  • Jung HI, Lee YY, Lim HW, Ahn KS, Park EH, Lim CJ (2002) Regulation of the manganese-containing superoxide dismutase gene from fission yeast. Mol Cells 14:300–304

    CAS  PubMed  Google Scholar 

  • Jungmann J, Reins HA, Schobert C, Jentsch S (1993) Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature 361:369–371

    Article  CAS  PubMed  Google Scholar 

  • Kupfer DM, Reece CA, Clifton SW, Roe BA, Prade RA (1997) Multicellular ascomycetous fungal genomes contain more than 8000 genes. Fungal Genet Biol 21:364–372

    Article  CAS  PubMed  Google Scholar 

  • Lacourt I, D’Angelo S, Girlanda M, Turnau K, Bonfante P, Perotto S (2000) Genetic polymorphism and metal sensitivity of Oidiodendron maius strains isolated from polluted soil. Ann Microbiol 50:157–166

    CAS  Google Scholar 

  • Lahav R, Nejidat A, Abeliovich A (2004) Alterations in protein synthesis and levels of heat shock 70 proteins in response to salt stress of the halotolerant yeast hodotorula mucilaginosa. Antonie van Leeuwenhoek 85:259–269

    Article  CAS  PubMed  Google Scholar 

  • Lanfranco L, Bolchi A, Ros EC, Ottonello S, Bonfante P (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67

    Article  CAS  PubMed  Google Scholar 

  • Lanfranco L, Balsamo R, Martino E, Bonfante P, Perotto S (2004) Zinc ions differentially affect chitin synthase gene expression in an ericoid mycorrhizal fungus. Plant Biosystems (in press)

  • Lee YY, Jung HI, Park EH, Sa JH, CJ Lim (2002) Regulation of Schizosaccharomyces pombe gene encoding copper/zinc superoxide dismutase. Mol Cells 14:43–49

    CAS  PubMed  Google Scholar 

  • Li R, Rimmer R, Buchwaldt L, Sharpe A, Seguin-Swartz G, Coutu C, Hegedus D (2004) Interaction of Sclerotinia sclerotiorum with a resistant Brassica napus cultivar: expressed sequence tag analysis identifies genes associated with fungal pathogenesis. Fungal Genet Biol 41:735–753

    Google Scholar 

  • Luk E, Carroll M, Baker M, Culotta VC (2003) Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family. Proc Natl Acad Sci USA 100:10353–10357

    Article  CAS  PubMed  Google Scholar 

  • Lum LS, Sultzman LA, Kaufman RJ, Linzer DI, Wu BJ (1990) A cloned human CCAAT-box-binding factor stimulates transcription from the human hsp70 promoter. Mol Cell Biol 10:6709–6717

    CAS  PubMed  Google Scholar 

  • Martin F (2001) Frontiers in molecular mycorrhizal research—genes, loci, dots and spins. New Phytol 150:499–505

    Article  Google Scholar 

  • Martino E, Coisson JD, Lacourt I, Favaron F, Bonfante P, Perotto S (2000a) Influence of heavy metals on production and activity of pectinolitic enzymes in ericoid mycorrhizal fungi. Mycol Res 104:825–833

    Article  CAS  Google Scholar 

  • Martino E, Turnau K, Girlanda M, Bonfante P, Perotto S (2000b) Ericoid mycorrhizal fungi from heavy metal polluted soils: their identification and growth in the presence of zinc ions. Mycol Res 104:338–344

    Article  CAS  Google Scholar 

  • Martino E, Franco B, Piccoli G, Stocchi V, Perotto S (2002) Influence of zinc ions on protein secretion in a heavy metal tolerant strain of the ericoid mycorrhizal fungus Oidiodendron maius. Mol Cell Biochem 231:179–185

    Article  CAS  PubMed  Google Scholar 

  • Martino E, Perotto S, Parson R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141

    Article  CAS  Google Scholar 

  • Mehra RK, Tarbetn EB, Garey JR, Winge DR (1988) Metal-specific synthesis of two metallothioneins and γ-glutamil peptides in Candida glabrata. Proc Natl Acad Sci USA 85:8815–8819

    CAS  PubMed  Google Scholar 

  • Mehra RK, Garey JR, Butt TR, Gray WR, Winge DR (1989) Candida glabrata metallothioneins: cloning and sequence of the genes and characterization of proteins. J Biol Chem 264:19747–19753

    CAS  PubMed  Google Scholar 

  • Munger K, Germann UA, Lerch K (1985) Isolation and structural organization of the Neurospora crassa copper metallothionein gene. EMBO J 10:2665–2668

    Google Scholar 

  • Murphy A, Taiz L (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Correlation with copper tolerance. Plant Physiol 109:945–954

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Nakayama S, Okada Y, Min KS, Onosaka S, Tanaka K (1990) Amino acids and peptides. XXVI. Synthesis of Agaricus bisporus metallothionein and related peptides and examination of their heavy metal-binding properties. Chem Pharm Bull (Tokyo) 38:2112–2117

    Google Scholar 

  • Ohlrogge J, Benning C (2000) Unraveling plant metabolism by EST analysis. Curr Opin Plant Biol 3:224–228

    Article  CAS  PubMed  Google Scholar 

  • Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11:3491–3499

    CAS  PubMed  Google Scholar 

  • Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721–4728

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Lewitter F (1999) Nucleotide sequence databases: a gold mine for biologists. Trends Biochem Sci 24:276–280

    Article  CAS  PubMed  Google Scholar 

  • Perego P, Howell H (1997) Molecular mechanisms controlling sensitivity to toxic metal ions in yeast. Toxicol Appl Pharm 147:312–318

    Article  CAS  Google Scholar 

  • Perotto S, Martino E (2001) Molecular and cellular mechanisms of heavy metal tolerance in mycorrhizal fungi: what perspectives for bioremediation? Minerva Biotecnol 13:55–63

    Google Scholar 

  • Perotto S, Actis-Perino E, Perugini J, Bonfante P (1996) Molecular diversity of fungi from ericoid mychorrizal roots. Mol Ecol 5:123–131

    CAS  Google Scholar 

  • Perotto S, Girlanda M, Martino E (2002) Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant Soil 244:41–53

    Article  CAS  Google Scholar 

  • Ray A, Macwana S, Ayoubi P, Hall LT, Prade R, Mort AJ (2004) Negative subtraction hybridization: an efficient method to isolate large numbers of condition-specific cDNAs. Biomed Cent Genomics 5:22

    Google Scholar 

  • Read DJ (1996) The structure and function of the ericoid mycorrhizal root. Ann Bot 77:365–374

    Article  CAS  Google Scholar 

  • Ruijter GJ, Panneman H, Xu D, Visser J (2000) Properties of Aspergillus niger citrate synthase and effects of citA overexpression on citric acid production. FEMS Microbiol Lett 84:35–40

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor. N.Y.

    Google Scholar 

  • Sanità di Toppi L, Prasad MNV, Ottonello S (2002) Metal chelating peptides and proteins in plants. In: Prasad MNV, Strzalka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer, Dordrecht, pp 59–93

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Shirzadegan M, Christie P, Seemann JR (1991) An efficient method for isolation of RNA from tissue cultured plant cells. Nucleic Acids Res 19:6055

    CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London

  • Thorvaldsen JL, Sewell AK, McCowen CL, Winge DR (1993) Regulation of metallothionein genes by the ACE1 and AMT1 transcription factors. J Biol Chem 268:12512–12518

    CAS  PubMed  Google Scholar 

  • Tsang EW, Bowler C, Herouart D, Van Camp W, Villarroel R, Genetello C, Van Montagu M, Inze D (1991) Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3:783–792

    Article  CAS  PubMed  Google Scholar 

  • Turnau K (1988) The influence of industrial dust on the mycoflora of Pino-Quercetum forest near Cracow. III. The influence of industrial dust on the mycorrhiza of Vaccinium myrtillus. Scientific Papers of Krakow Agricultural Academy 226:135–145

    Google Scholar 

  • Wiemken V, Boller T (2002) Ectomycorrhiza: gene expression, metabolism and the wood-wide web. Curr Opin Plant Biol 5:355–361

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Nowrousian M, Kupfer D, Colot HV, Berrocal-Tito G, Lai H, Bell-Pedersen D, Roe BA, Loros JJ, Dunlap JC (2001) Analysis of expressed sequence tags from two starvation, time-of-day-specific libraries of Neurospora crassa reveals novel clock-controlled genes. Genetics 157:1057–1065

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank John Doonan and Patricia Lunness at the John Innes Centre in Norwich, UK, for their help in the construction of the library. We thank Prof. Simone Ottonello and his group at the Department of Molecular Biology and Biochemistry, University of Parma, Italy, for their help in the reverse northern hybridisation. M.V. acknowledges financial support by the University of Torino. The results described are part of the CEBIOVEM (D.M. 193/2003) program. Research was also partly funded by Cassa di Risparmio di Torino (CRT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Perotto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallino, M., Drogo, V., Abba’, S. et al. Gene expression of the ericoid mycorrhizal fungus Oidiodendron maius in the presence of high zinc concentrations. Mycorrhiza 15, 333–344 (2005). https://doi.org/10.1007/s00572-004-0335-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-004-0335-0

Keywords

Navigation