Skip to main content
Log in

Utilisation of carbon substrates by multiple genotypes of ericoid mycorrhizal fungal endophytes from eastern Australian Ericaceae

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The abilities of six genotypes of two putative Helotiales ascomycete ericoid mycorrhizal fungal taxa from Woollsia pungens and Leucopogon parviflorus (Ericaceae) to utilise glucose, galactose, mannose, cellobiose, carboxymethylcellulose, crystalline cellulose, starch and xylan as sole carbon sources were tested in axenic liquid culture. With the exception of all taxon II isolates on carboxymethylcellulose, all genotypes of both taxa produced measurable biomass on all substrates. Significant intraspecific variation was observed in biomass production on all substrates. While pooled data for all genotypes of each taxon revealed significant interspecific differences in biomass production on carboxymethylcellulose, glucose, cellobiose, and starch, mean biomass production for each taxon on the latter three substrates differed less than threefold, suggesting that the saprotrophic abilities of the two taxa are broadly similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Bending GD, Read DJ (1996a) Effects of the soluble polyphenol tannic acid on the activities of ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1595–1602

    CAS  Google Scholar 

  • Bending GD, Read DJ (1996b) Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1603–1612

    CAS  Google Scholar 

  • Burke RM, Cairney JWG (1997a) Carbohydrolase production by the ericoid mycorrhizal fungus Hymenoscyphus ericae under solid state fermentation conditions. Mycol Res 101:1135–1139

    Article  CAS  Google Scholar 

  • Burke RM, Cairney JWG (1997b) Purification and characterisation of a β-1,4-endoxylanase from the ericoid mycorrhizal fungus Hymenoscyphus ericae. New Phytol 135:345–352

    Article  CAS  Google Scholar 

  • Burke RM, Cairney JWG (1998) Carbohydrate oxidases in ericoid and ectomycorrhizal fungi: a possible source of Fenton radicals during the degradation of lignocellulose. New Phytol 139:637–465

    CAS  Google Scholar 

  • Cairney JWG (1999) Intraspecific physiological variation: implications for understanding functional diversity in ectomycorrhizal fungi. Mycorrhiza 9:125–135

    Article  Google Scholar 

  • Cairney JWG, Ashford AE (2002) Biology of mycorrhizal associations of epacrids (Ericaceae). New Phytol 154:305–326

    Article  Google Scholar 

  • Cairney JWG, Burke RM (1998) Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf & Kernan: their likely roles in decomposition of dead plant tissue in soil. Plant Soil 205:181–192

    CAS  Google Scholar 

  • Cairney JWG, Meharg AA (2003) Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. Eur J Soil Sci (in press)

    Google Scholar 

  • Cairney JWG, Sawyer NA, Sharples JM, Meharg AA (2000) Intraspecific variation in nitrogen source utilisation by isolates of the ericoid mycorrhizal fungus Hymenoscyphus ericae (Read) Korf and Kernan. Soil Biol Biochem 32:1319–1322

    Article  CAS  Google Scholar 

  • Jennings DH (1995) The physiology of fungal nutrition. Cambridge University Press, Cambridge

  • Leake JR, Read DJ (1997) Mycorrhizal fungi in terrestrial habitats. In: Wicklow D, Söderström B (eds) The mycota. IV. Environmental and microbial relationships. Springer, Berlin Heidelberg New York, pp 281–301

  • Marx DH, Bryan WC (1975) Growth and ectomycorrhizal development of loblolly pine seedlings in fumigated soil infested with the fungal symbiont Pisolithus tinctorius. For Sci 21:245–254

    Google Scholar 

  • Meletiadis J, Meis JFGM, Mouton JW, Verweij PE (2001) Analysis of growth characteristics of filamentous fungi in different nutrient media. J Clin Microbiol 39:478–484

    Article  CAS  PubMed  Google Scholar 

  • Midgley DJ, Chambers SM, Cairney JWG (2002) Spatial distribution of fungal endophyte genotypes in a Woollsia pungens (Ericaceae) root system. Aust J Bot 50:559–565

    CAS  Google Scholar 

  • Pearson V, Read DJ (1975) The physiology of the mycorrhizal endophyte of Calluna vulgaris. Trans Br Mycol Soc 64:1–7

    Google Scholar 

  • Perotto R, Bettini V, Bonfante P (1993) Evidence of two polygalacturonases produced by a mycorrhizal ericoid fungus during its saprotrophic growth. FEMS Microbiol Lett 114:85–92

    Article  Google Scholar 

  • Perotto S, Perotto R, Faccio A, Schubert A, Varma A, Bonfante P (1995) Ericoid mycorrhizal fungi: cellular and molecular bases of their interactions with the host plant. Can J Bot 73:S557-S568

    CAS  Google Scholar 

  • Perotto S, Coisson JD, Perugini I, Cometi V, Bonfante P (1997). Production of pectin-degrading enzymes by ericoid mycorrhizal fungi. New Phytol 135:151–162

    CAS  Google Scholar 

  • Piercey MM, Thormann MN, Currah RS (2002) Saprobic characteristics of three fungal taxa from ericalean roots and their association with the roots of Rhododendron groenlandicum and Picea mariana in culture. Mycorrhiza 12:175–180

    Article  CAS  PubMed  Google Scholar 

  • Read DJ (1996) The structure and function of the ericoid mycorrhizal root. Ann Bot 77:365–374

    CAS  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems — a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Reed ML (1989) Ericoid mycorrhizas of Styphelieae: intensity of infection and nutrition of the symbionts. Aust J Plant Physiol 16:155–160

    Google Scholar 

  • Straker CJ (1996) Ericoid mycorrhiza: ecological and host specificity. Mycorrhiza 6:215–225

    Article  Google Scholar 

  • Thormann MN, Currah RS, Bayley SE (2002) The relative ability of fungi from Sphagnum fuscum to decompose selected carbon substrates. Can J Microbiol 48:204–211

    Article  CAS  PubMed  Google Scholar 

  • Tuohy MG, Walsh DJ, Murray PG, Claeyssens M, Cuffe MM, Savage AV, Coughlan MP (2002) Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochim Biophys Acta 1596:366–380

    Article  CAS  PubMed  Google Scholar 

  • Varma A, Bonfante P (1994) Utilisation of cell-wall related carbohydrates by ericoid mycorrhizal endophytes. Symbiosis 16:301–313

    CAS  Google Scholar 

  • Wiese J, Kleber R, Hampp R, Nehls U (2000) Functional characterization of the Amanita muscaria monosaccharide transporter AmMst1. Plant Biol 2:278–282

    Article  CAS  Google Scholar 

  • Xiao G, Berch SM (1999) Organic nitrogen use by salal ericoid mycorrhizal fungi from northern Vancouver Island and impacts on growth in vitro of Gaultheria shallon. Mycorrhiza 9:145–149

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the NSW National Parks and Wildlife Service for permission to obtain isolates of Woollsia pungens and Leucopogon parviflorus plants in the Blue Mountains National Park. We are also grateful to Dr. Ron Burke for his comments on cellulase activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. G. Cairney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Midgley, D.J., Chambers, S.M. & Cairney, J.W.G. Utilisation of carbon substrates by multiple genotypes of ericoid mycorrhizal fungal endophytes from eastern Australian Ericaceae. Mycorrhiza 14, 245–251 (2004). https://doi.org/10.1007/s00572-003-0262-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-003-0262-5

Keywords

Navigation