Skip to main content
Log in

Fabrication of large-area cylindrical microlens array based on electric-field-driven jet printing

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The cylindrical microlens array (CMLA) is an important micro-optical component, it has very significant application effects in the fields of naked eye three-dimensional display, laser line generation, and deformed beam shaping. However, the high efficiency and low-cost manufacturing of large-area CMLA is still challenging for industry and academia. Based on the electric-field-driven (EFD) jet printing technique, a new method for manufacturing a large-area CMLA with high efficiency and low cost has been proposed. We use the theoretical analysis and numerical simulation to investigate the basic principle of EFD jet printing. The influence of process parameters on the formation of CMLA was revealed by experiments. Using optimized process parameters, the fabrication of a CMLA with a patterned area of 50 × 50 mm2, a line width of 70 μm, and a period of 100 μm was achieved. The geometric and optical properties of the fabricated CMLA were characterized, showing that the products have the good geometric appearance and focusing effect. The results show that the proposed fabrication method provides a new manufacturing process for large-area manufacturing of CMLA with high efficiency and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bi X, Li W (2015) Fabrication of flexible microlens arrays through vapor-induced dewetting on selectively plasma-treated surfaces. J Mater Chem C 3(22):5825–5834

    Article  Google Scholar 

  • Bian R, Xiong Y, Chen X et al (2015) Ultralong focal length microlens array fabricated based on SU-8 photoresist. Appl Opt 54(16):5088–5093

    Article  Google Scholar 

  • Chang CY, Yu CH (2015) A basic experimental study of ultrasonic assisted hot embossing process for rapid fabrication of microlens arrays. J Micromech Microeng 25(2):025010

    Article  MathSciNet  Google Scholar 

  • Choi HK, Ahsan MS, Yoo D et al (2015) Formation of cylindrical micro-lens array on fused silica glass surface using CO2, laser assisted reshaping technique. Opt Laser Technol 75:63–70

    Article  Google Scholar 

  • Cox WR, Chen T, Hayes DJ (2001) Micro-optics fabrication by ink-jet printers. Opt Photonics News 12(6):32–35

    Article  Google Scholar 

  • Jacot-Descombes L, Cadarso VJ, Schleunitz A et al (2015) Organic–inorganic-hybrid-polymer microlens arrays with tailored optical characteristics and multi-focal properties. Opt Express 23(19):25365–25376

    Article  Google Scholar 

  • Kim JY, Pfeiffer K, Voigt A et al (2012) Directly fabricated multi-scale microlens arrays on a hydrophobic flat surface by a simple ink-jet printing technique. J Mater Chem 22(7):3053–3058

    Article  Google Scholar 

  • Kim HS, Kim CK, Jang HW (2013) Fabrication of a microball lens array for OLEDs fabricated using a monolayer microsphere template. Electron Mater Lett 9(1):39–42

    Google Scholar 

  • Li X, Ding Y, Shao J et al (2011) Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes. Opt Lett 36(20):4083

    Article  Google Scholar 

  • Li X, Ding Y, Shao J et al (2012) Fabrication of microlens arrays with well-controlled curvature by liquid trapping and electrohydrodynamic deformation in microholes. Adv Mater 24(23):OP165–OP169

    Google Scholar 

  • Li X, Tian H, Ding Y et al (2013) Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature. Appl Mater Interfaces 5(20):9975–9982

    Article  Google Scholar 

  • Lim Jiseok, Gruner Philipp, Konrad Manfred et al (2013) Micro-optical lens array for fluorescence detection in droplet-based microfluidics. Lab Chip 13(8):1472–1475

    Article  Google Scholar 

  • Lu DX, Zhang YL, Han DD et al (2015) Solvent-tunable PDMS microlens fabricated by femtosecond laser direct writing. J Mater Chem C 3(8):1751–1756

    Article  Google Scholar 

  • Luo Y, Wang L, Ding Y et al (2013) Direct fabrication of microlens arrays with high numerical aperture by ink-jetting on nanotextured surface. Appl Surf Sci 279:36–40

    Article  Google Scholar 

  • Luo Z, Wang C, Yin K et al (2016) Rapid fabrication of cylindrical microlens array by shaped femtosecond laser direct writing. Appl Phys A 122(7):633

    Article  Google Scholar 

  • Luo Z, Duan J, Guo C (2017) Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica. Opt Lett 42(12):2358

    Article  Google Scholar 

  • MacFarlane DL, Narayan V, Tatum JA et al (1994) Microjet fabrication of microlens arrays. IEEE Photonics Technol Lett 6:1112–1114

    Article  Google Scholar 

  • Meng X, Chen F, Yang Q et al (2015) Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching. Appl Phys A 121(1):157–162

    Article  Google Scholar 

  • Orth A, Crozier KB (2017) High throughput multichannel fluorescence microscopy with microlens arrays. Opt Express 22(15):18101

    Article  Google Scholar 

  • Park JU, Hardy M, Kang SJ et al (2007) High-resolution electrohydrodynamic jet printing. Nat Mater 6(10):782

    Article  Google Scholar 

  • Popovic ZD, Sprague RA, Connell GAN (1988) Technique for monolithic fabrication of microlens arrays. Appl Opt 27(7):1281–1284

    Article  Google Scholar 

  • Qian L, Lan H et al (2018) Electric-field-driven jet deposition 3D printing. Sci Sin Technol 48(07):77–86

    Article  Google Scholar 

  • Shan XC, Liu T, Mohaime M et al (2015) Large format cylindrical lens films formed by roll-to-roll ultraviolet embossing and applications as diffusion films. J Micromech Microeng 25(3):035029

    Article  Google Scholar 

  • Shen SC, Huang JC (2009) Rapid fabrication of a micro-ball lens array by extrusion for optical fiber applications. Opt Express 17(15):13122–13127

    Article  Google Scholar 

  • Song YM, Xie Y, Malyarchuk V et al (2013) Digital cameras with designs inspired by the arthropod eye. Nature 497(7447):95–99

    Article  Google Scholar 

  • Sutanto E, Tan Y, Onses MS et al (2015) Electrohydrodynamic jet printing of micro-optical devices. Manuf Lett 2(1):4–7

    Article  Google Scholar 

  • Wu D, Chen QD, Niu LG et al (2009) 100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision. Photonics Technol Lett IEEE 21(20):1535–1537

    Article  Google Scholar 

  • Xie D, Zhang H, Shu X et al (2012) Fabrication of polymer micro-lens array with pneumatically diaphragm-driven drop-on-demand inkjet technology. Opt Express 20(14):15186–15195

    Article  Google Scholar 

  • Xie D, Chang X, Shu X et al (2015) Rapid fabrication of thermoplastic polymer refractivemicrolens array using contactless hot embossing technology. Opt Express 23(4):5154–5166

    Article  Google Scholar 

  • Xin L, Man Z, Li-Fang S et al (2017) Fabrication method for the microlens array of high F-number. Acta Photonica Sin 46(2):222004

    Article  Google Scholar 

  • Xing J, Rong W, Sun D et al (2016) Extrusion printing for fabrication of spherical and cylindrical microlens arrays. Appl Opt 55(25):6947

    Article  Google Scholar 

  • Ye H, Cao Z, Li M (2018) Rapid fabrication of semiellipsoid microlenses using 3D-printing and roll-to-roll imprinting process. Microsyst Technol 24(8):3437–3441

    Article  Google Scholar 

  • Yong J, Chen F, Yang Q et al (2013) Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser. ACS Appl Mater Interfaces 5(19):9382–9385

    Article  Google Scholar 

  • Yu-Yan P, Xiong-Tu Z, Yong-Ai Z et al (2016) Design and simulation of curved microlens array for integral imaging 3D display. Acta Photonica Sin 45(3):322002

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant no. 51705271, 51775288), Shandong Provincial Natural Science Foundation, China (no. ZR2017QEE018), and A Project of Shandong Province Higher Educational Science and Technology Program (J17KA032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyang Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Zhu, X., Li, H. et al. Fabrication of large-area cylindrical microlens array based on electric-field-driven jet printing. Microsyst Technol 25, 4495–4503 (2019). https://doi.org/10.1007/s00542-019-04478-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04478-0

Navigation