Skip to main content
Log in

Dynamic pull-in of thermal cantilever nanoswitches subjected to dispersion and axial forces using nonlocal elasticity theory

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Precise analysis of nanoelectromechanical systems has an outstanding contribution in performance improvement of such systems. In this research, the dynamic instability of a cantilever nanobeam connected to a horizontal spring is analyzed. The system is subjected to thermal, electrostatic and molecular (Casimir and van der Waals) forces. By applying the Eringen’s nonlocal elasticity theory, the equilibrium equations are derived. The nonlinear dynamics governing equations of the actuated thermal switch are solved by reduced order method. Finally, the effects of several system parameters on the dynamic behavior of the nanocantilever are examined in detail. It is concluded that considering the nonlocal theory results in increasing the rigidity of cantilever nanobeams, unlike fixed-fixed nanobeams. Furthermore, the nonlocality affects more significantly by increasing the temperature of cantilevers; however, it is completely the opposite for double-clamped beams. The obtained results can be considered for modeling and analysis of several thermal micro and nanosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmadian MT, Pasharavesh A, Fallah A (2011) Application of nonlocal theory in dynamic pull-in analysis of electrostatically actuated micro and nano beams. Proceedings of the ASME 2011 international design engineering technical conferences & computers and information in engineering conference IDETC/CIE 2011, August 28–31, USA

  • Alipour A, Moghimi Zand M, Daneshpajooh H (2015) Analytical solution to nonlinear behavior of electrostatically actuated nanobeams incorporating van der Waals and Casimir forces. Sci Iran F 22(3):1322–1329

    Google Scholar 

  • Alsaleem FM, Younis MI, Ruzziconi L (2010) An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. J Microelectromech Syst 19:794–806

    Article  Google Scholar 

  • Arash B, Wang Q (2012) A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput Mater Sci 51:303–313

    Article  Google Scholar 

  • Batra RC, Porfiri M, Spinello D (2006) Electromechanical model of electrically actuated narrow microbeams. J Microelectromech Syst 15(5):1175–1189

    Article  Google Scholar 

  • Batra RC, Porfiri M, Spinello D (2008a) Effects of van der Waals force and thermal stresses on pull-in instability of clamped rectangular microplates. Sensors 8:1048–1069

    Article  Google Scholar 

  • Batra RC, Porfiri M, Spinello D (2008b) Vibrations of narrow microbeams predeformed by an electric field. J Sound Vib 309:600–612

    Article  Google Scholar 

  • Caruntu DI, Martinez I, Knecht MW (2013) Reduced order model analysis of frequency response of alternating current near half natural frequency electrostatically actuated MEMS cantilevers. J Comput Nonlinear Dyn 8:031011

    Article  Google Scholar 

  • Chao PCP, Chiu CW, Liu TH (2008) DC dynamic pull-in predictions for a generalized clamped–lamped micro-beam based on a continuous model and bifurcation analysis. J Micromech Microeng 18:1–14

    Google Scholar 

  • Chaterjee S, Pohit G (2009) A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams. J Sound Vib 322:969–986

    Article  Google Scholar 

  • Craighead HG (2000) Nanoelectromechanicalsystems. Science 290:1532–1535

    Article  Google Scholar 

  • Eltaher MA, Alshorbagy AE, Mahmoud FF (2013) Vibration analysis of Euler–Bernoulli nanobeams by using finite element method. Appl Math Model 37:4787–4797

    Article  MathSciNet  MATH  Google Scholar 

  • Eringen AC (1972) Nonlocal polar elastic continuum. Int J Eng Sci 10:1–16

    Article  MATH  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  Google Scholar 

  • Evoy S, Carr DW, Sekaric L, Olkhovets A, Parpia JM, Craighead HG (1999) Nano fabrication and electrostatic operation of single-crystal silicon paddle oscillations. J Appl Phys Rev B 69:165410

    Google Scholar 

  • Farrokhabadi A, Tavakolian F (2017) Size-dependent dynamic analysis of rectangular nanoplates in the presence of electrostatic, Casimir and thermal forces. Appl Math Model 50:604–620

    Article  MathSciNet  Google Scholar 

  • Farrokhabadi A, Mohebshahedin A, Rach R, Duan JS (2016) An improved model for the cantilever NEMS actuator including the surface energy, fringing field and Casimir effects. Phys E 75:202–209

    Article  Google Scholar 

  • Fu Y, Zhang J (2011) Size-dependent pull-in phenomena in electrically actuated nano beams incorporating surface energies. Appl Math Model 35:941–951

    Article  MathSciNet  Google Scholar 

  • Ghorbanpour Arani A, Ghaffari M, Jalilvand A, Kolahchi R (2013) Nonlinear nonlocal pull-in instability of boron nitride nanoswitches. Acta Mech 224:3005–3019

    Article  MathSciNet  Google Scholar 

  • Ghorbanpour Arani A, Jalilvand A, Ghaffari M, Talebi Mazraehshahi M, Kolahchi R, Roudbari MA, Amir S (2014) Nonlinear pull-in instability of boron nitride nano-switches considering electrostatic and Casimir forces. Sci Iran F 21(3):1183–1196

    Google Scholar 

  • Huang JM, Liew KM, Wong CH, Rajendran S, Tan MJ, Liu AQ (2001) Mechanical design and optimization of capacitive micromachined switch. Sens Actuators A 93(3):273–285

    Article  Google Scholar 

  • Israelachvili JN (1992) Intermolecular and Surface Forces: With applications to colloidal and biological systems (colloid science). Academic Press, London

    Google Scholar 

  • Jia XL, Yang J, Kitipornchai S (2011) Pull-in instability of geometrically nonlinear microswitches under electrostatic and Casimir forces. Acta Mech 218:161–174

    Article  MATH  Google Scholar 

  • Juntarasaid C, Pulngern T, Chucheepsakul S (2012) Bending and buckling of nanowires including the effects of surface stress and nonlocal elasticity. Phys E 46:68–76

    Article  Google Scholar 

  • Klimchitskaya GL, Mohideen U, Mostepanenko VM (2000) Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals. Phys Rev A 61:062107

    Article  Google Scholar 

  • Kovalenko A (1969) Thermoelasticity (basic theory and applications). Wolters-Noordhoff Publishing, Groningen

    MATH  Google Scholar 

  • Lamoreaux SK (2005) The Casimir force: background, experiments and applications. Rep Prog Phys 68:201–236

    Article  Google Scholar 

  • Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a plat form for chemical and biological sensors. Rev Sci Instrum 75:2229–2253

    Article  Google Scholar 

  • Lifshitz EM (1965) The theory of molecular attractive forces between solids. Sov Phys JETP 2:73–83

    Google Scholar 

  • Mogimi Zand M, Ahmadian MT (2009) Application of homotopy analysis method in studying dynamic pull-in Instability of microsystems. J Mech Res Commun 36:851–858

    Article  MATH  Google Scholar 

  • Mousavi T, Bornassi S, Haddadpour H (2013) The effect of small scale on the pull-in instability of nano-switches using DQM. Int J Solids Struct 50:1193–1202

    Article  Google Scholar 

  • Nakhaie Jazar G (2006) Mathematical modeling and simulation of thermal effects in flexural microcantilever resonator dynamics. J Vib Control 12(2):139–163

    Article  MATH  Google Scholar 

  • Nathanson HC, Newell WE, Wickstrom RA, Davis JR (1967) The resonant gate transistor. IEEE Trans Electron Devices 14(3):117–133

    Article  Google Scholar 

  • Rahmanian S, Ghazavi MR, Hosseini-Hashemi S (2018) Effects of size, surface energy and casimir force on the superharmonic resonance characteristics of a double-layered viscoelastic NEMS device under piezoelectric actuations. Iran J Sci Technol Trans Mech Eng. https://doi.org/10.1007/s40997-018-0161-1

    Article  Google Scholar 

  • Rahaeifard M, Ahmadian MT, Firoozbakhsh K (2014) Size-dependent dynamic behavior of microcantilevers under suddenly applied DC voltage. Proc IMechE Part C J Mech Eng Sci 228(5):896–906

    Article  Google Scholar 

  • Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288–307

    Article  MATH  Google Scholar 

  • Reddy JN, El-Borgi S (2014) Eringen’s nonlocal theories of beams accounting for moderate rotations. Int J Eng Sci 2:159–177

    Article  MathSciNet  MATH  Google Scholar 

  • Rocha LA, Cretu E, Wolffenbuttel RF (2004) Compensation of temperature effects on the pull-in voltage of microstructures. Sens Actuators A 115:351–356

    Article  Google Scholar 

  • Roque CMC, Ferreira AJM, Reddy JN (2011) Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method. Int J Eng Sci 49:976–984

    Article  MATH  Google Scholar 

  • Sedighi HM (2014) Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory. Acta Astronaut 95:111–123

    Article  Google Scholar 

  • Sedighi HM, Shirazi KH (2013) Vibrations of microbeams actuated by an electric field via parameter expansion method. Acta Astronaut 85:19–24

    Article  Google Scholar 

  • Sedighi HM, Farhang D, Jamal Z (2014) The influence of dispersion forces on the dynamic pull-in behavior of vibrating nano-cantilever based NEMS including fringing field effect. Arch Civil Mech Eng 14(4):766–775

    Article  Google Scholar 

  • SoltanRezaee M, Afrashi M (2016) Modeling the nonlinear pull-in behavior of tunable nano-switches. Int J Eng Sci 109:73–87

    Article  MathSciNet  MATH  Google Scholar 

  • SoltanRezaee M, Ghazavi MR (2017) Thermal, size and surface effects on the nonlinear pull-in of small-scale piezoelectric actuators. Smart Mater Struct 26(9):095023

    Article  Google Scholar 

  • SoltanRezaee M, Farrokhabadi A, Ghazavi MR (2016) The influence of dispersion forces on the size-dependent pull-in instability of general cantilever nano-beams containing geometrical non-linearity. Int J Mech Sci 119:114–124

    Article  Google Scholar 

  • SoltanRezaee M, Afrashi M, Rahmanian S (2018) Vibration analysis of thermoelastic nano-wires under Coulomb and dispersion forces. Int J Mech Sci 142–143:33–43

    Article  Google Scholar 

  • Tavakolian F, Farrokhabadi A (2017) Size-dependent dynamic instability of double-clamped nanobeams under dispersion forces in the presence of thermal stress effects. Microsyst Technol 23(8):3685–3699

    Article  Google Scholar 

  • Tavakolian F, Farrokhabadi A, Mirzaei M (2017) Pull-in instability of double clamped microbeams under dispersion forces in the presence of thermal and residual stress effects using nonlocal elasticity theory. Microsyst Technol 23(4):839–848

    Article  Google Scholar 

  • Thai HT (2012) A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int J Eng Sci 52:56–64

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98:124301

    Article  Google Scholar 

  • Wang Q, Liew KM (2007) Application of nonlocal continuum mechanics to static analysis of micro and nano-structures. Phys Lett A 363(3):236–242

    Article  Google Scholar 

  • Zhang YQ, Liu X, Zhao HJ (2008) Influence of temperature change on column buckling of multiwalled carbon nanotubes. Phys Lett A 372:1676–1681

    Article  MATH  Google Scholar 

  • Zhu Y, Espinosa HD (2004) Effect of temperature on capacitive RF MEMS switch performance-a coupled-field analysis. J Micromech Microeng 14:1270–1279

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Farrokhabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

1.1 The governing equation of electrostatic and van der Waals attractions

$$\begin{aligned} &{\text{u}}^{\prime\prime}_{\text{n}} + \upomega _{\text{n}}^{2} {\text{u}}_{\text{n}} - 5(1 + \upmu {\text{N}}^{*} )\,\upomega _{1}^{2} {\text{u}}_{1}^{2} \int_{0}^{1} {\text{q}}_{1}^{3} {\text{dx}} + 10(1 + \upmu {\text{N}}^{*} )\upomega _{1}^{2} {\text{u}}_{1}^{3} \int_{0}^{1} {\text{q}}_{1}^{4} {\text{dx}} - 10(1 + \upmu {\text{N}}^{*} )\upomega _{1}^{2} {\text{u}}_{1}^{4} \int_{0}^{1} {\text{q}}_{1}^{5} {\text{dx}} \hfill \\ &\quad + 5(1 + \upmu {\text{N}}^{*} )\upomega _{1}^{2} {\text{u}}_{1}^{5} \int_{0}^{1} {\text{q}}_{1}^{6} {\text{dx}} - (1 + \upmu {\text{N}}^{*} )\upomega _{1}^{2} {\text{u}}_{1}^{6} \int_{0}^{1} {{\text{q}}_{1}^{7} } {\text{dx}} - 5{\text{u}}^{\prime\prime}_{1} {\text{u}}_{1} \int_{0}^{1} {{\text{q}}_{1}^{3} } {\text{dx}} + 10{\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{2} \int_{0}^{1} {\text{q}}_{1}^{4} {\text{dx}} \hfill \\ &\quad - 10{\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{3} \int_{0}^{1} {{\text{q}}_{1}^{5} } {\text{dx}} + 5{\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{4} \int_{0}^{1} {\text{q}}_{1}^{6} {\text{dx}} - {\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{5} \int_{0}^{1} {\text{q}}_{1}^{7} {\text{dx}} - \upmu {\text{u}}^{\prime\prime}_{1} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1} } {\text{dx}} + 5\upmu {\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{{}} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{2} } {\text{dx}} \hfill \\ &\quad - 10\upmu {\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{2} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{3} } {\text{dx}} + 10\upmu {\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{3} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{4} } {\text{dx}} - 5\upmu {\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{4} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{5} } {\text{dx}} + \upmu {\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{5} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{6} } {\text{dx}} \hfill \\ &\quad + \upmu {\text{V}}^{2} \left(6 + 2\frac{{0.65{\text{d}}}}{\text{b}}\right){\text{u}}_{1}^{2} \int_{0}^{1} {\dot{{\text{q}}}_{1}^{2} {\text{q}}_{1} } {\text{dx}} - \upmu {\text{V}}^{2} \left(6 + 4\frac{{0.65{\text{d}}}}{\text{b}}\right){\text{u}}_{1}^{3} \int_{0}^{1} {\dot{{\text{q}}}_{1}^{2} {\text{q}}_{1}^{2} } {\text{dx}} + \left[ {\upmu {\text{V}}^{2} \left(2 + \frac{{0.65{\text{d}}}}{\rm{b}}\right) - {\text{N}}^{*} } \right]{\text{u}}_{1}^{{}} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{2} } {\text{dx}} \hfill \\ &\quad + \left[ {\upmu {\text{V}}^{2} \left(4 + 3\frac{{0.65{\text{d}}}}{\rm{b}}\right) - 5{\text{N}}^{*} } \right]{\text{u}}_{1}^{2} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{2} } {\text{dx}} + \left[ {\upmu {\text{V}}^{2} \left(2 + 3\frac{{0.65{\text{d}}}}{\rm{b}}\right) - 10{\text{N}}^{*} } \right]{\text{u}}_{1}^{3} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{3} } {\text{dx}} \hfill \\ &\quad + 2\upmu {\text{V}}^{2} \frac{{0.65{\text{d}}}}{\rm{b}}{\text{u}}_{1}^{4} \int_{0}^{1} {\dot{{\text{q}}}_{1}^{2} {\text{q}}_{1}^{3} } {\text{dx}} - \left[ {\upmu {\text{V}}^{2} \frac{{0.65{\text{d}}}}{\rm{b}} - 10{\text{N}}^{*} } \right]{\text{u}}_{1}^{4} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{4} } {\text{dx}} + 5{\text{N}}^{*} {\text{u}}_{1}^{5} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{5} } {\text{dx}} + {\text{N}}^{*} {\text{u}}_{1}^{6} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{6} } {\text{dx}} \hfill \\ &\quad + 12\upmu \uplambda _{3} {\text{u}}_{1}^{2} \int_{0}^{1} {\dot{{\text{q}}}_{1}^{2} {\text{q}}_{1}^{{}} } {\text{dx}} + 3\upmu \uplambda _{3} {\text{u}}_{1}^{{}} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{{}} } {\text{dx}} - 3\upmu \uplambda _{3} {\text{u}}_{1}^{2} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{2} } {\text{dx}} - {\text{V}}^{2} \left(1 + \frac{{0.65{\text{d}}}}{\rm{b}}\right)\int_{0}^{1} {{\text{q}}_{1}^{{}} } {\text{dx}} \hfill \\ &\quad + {\text{V}}^{2} \left(3 + 4\frac{{0.65{\text{d}}}}{\rm{b}}\right){\text{u}}_{1}^{{}} \int_{0}^{1} {{\text{q}}_{1}^{2} } {\text{dx}} - {\text{V}}^{2} \left(3 + 6\frac{{0.65{\text{d}}}}{\rm{b}}\right){\text{u}}_{1}^{2} \int_{0}^{1} {{\text{q}}_{1}^{3} } {\text{dx}} + {\text{V}}^{2} \left(1 + 4\frac{{0.65{\text{d}}}}{\rm{b}}\right){\text{u}}_{1}^{3} \int_{0}^{1} {{\text{q}}_{1}^{4} } {\text{dx}} \hfill \\ &\quad - {\text{V}}^{2} \frac{{0.65{\text{d}}}}{\rm{b}}{\text{u}}_{1}^{4} \int_{0}^{1} {{\text{q}}_{1}^{5} } {\text{dx}} - \uplambda _{3} \int_{0}^{1} {{\text{q}}_{1}^{{}} } {\text{dx}} + 2\uplambda _{3} {\text{u}}_{1}^{{}} \int_{0}^{1} {{\text{q}}_{1}^{2} } {\text{dx}} - \uplambda _{3} {\text{u}}_{1}^{2} \int_{0}^{1} {{\text{q}}_{1}^{3} } {\text{dx}} = 0. \hfill \\ \end{aligned}$$
(21)

1.2 The governing equation of electrostatic and Casimir attractions

$$\begin{aligned} &{\text{u}}^{\prime\prime}_{\text{n}} + \upomega_{\text{n}}^{2} {\text{u}}_{\text{n}} - 6(1 + \upmu {\text{N}}^{*} )\,\upomega_{1}^{2} {\text{u}}_{1}^{2} \int_{0}^{1} {{\text{q}}_{1}^{3} } {\text{dx}} + 15(1 + \upmu {\text{N}}^{*} )\upomega_{1}^{2} {\text{u}}_{1}^{3} \int_{0}^{1} {{\text{q}}_{1}^{4} } {\text{dx}} - 20(1 + \upmu {\text{N}}^{*} )\upomega_{1}^{2} {\text{u}}_{1}^{4} \int_{0}^{1} {{\text{q}}_{1}^{5} } {\text{dx}} \hfill \\ &\quad + 15(1 + \upmu {\text{N}}^{*} )\upomega_{1}^{2} {\text{u}}_{1}^{5} \int_{0}^{1} {{\text{q}}_{1}^{6} } {\text{dx}} - 6(1 + \upmu {\text{N}}^{*} )\upomega_{1}^{2} {\text{u}}_{1}^{6} \int_{0}^{1} {{\text{q}}_{1}^{7} } {\text{dx}} + (1 + \upmu {\text{N}}^{*} \upomega_{1}^{2} {\text{u}}_{1}^{7} \int_{0}^{1} {{\text{q}}_{1}^{8} } {\text{dx}} \hfill \\ &\quad- 6{\text{u}}^{\prime\prime}_{1} {\text{u}}_{1} \int_{0}^{1} {{\text{q}}_{1}^{3} } {\text{dx}} + 15{\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{2} \int_{0}^{1} {{\text{q}}_{1}^{4} } {\text{dx}} - 20{\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{3} \int_{0}^{1} {{\text{q}}_{1}^{5} } {\text{dx}} + 15{\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{4} \int_{0}^{1} {{\text{q}}_{1}^{6} } {\text{dx}} - 6{\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{5} \int_{0}^{1} {{\text{q}}_{1}^{7} } {\text{dx}} \hfill \\&\quad + {\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{6} \int_{0}^{1} {{\text{q}}_{1}^{8} } {\text{dx}} - \upmu {\text{u}}^{\prime\prime}_{1} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1} } {\text{dx}} + 6\upmu {\text{u}}^{\prime\prime}_{1} {\text{u}}_{1} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{2} } {\text{dx}} - 15\upmu {\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{2} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{3} } {\text{dx}} + 20\upmu {\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{3} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{4} } {\text{dx}} \hfill \\&\quad - 15\upmu {\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{4} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{5} } {\text{dx}} + 6\upmu {\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{5} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{6} } {\text{dx}} - \upmu {\text{u}}^{\prime\prime}_{1} {\text{u}}_{1}^{6} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{7} } {\text{dx}} + \upmu {\text{V}}^{2} \left(6 + 2\frac{0.65{\rm{d}}}{\text{b}}\right){\rm{u}}_{1}^{2} \int_{0}^{1} {\dot{{\text{q}}}_{1}^{2} {\text{q}}_{1} } {\text{dx}} \hfill \\&\quad - \upmu {\text{V}}^{2} \left(12 + 6\frac{0.65{\text{d}}}{\rm{b}}\right){\text{u}}_{1}^{3} \int_{0}^{1} {\dot{{\text{q}}}_{1}^{2} {\text{q}}_{1}^{2} } {\text{dx}} + \upmu {\text{V}}^{2} \left(6 + 6\frac{0.65{\text{d}}}{\text{b}}\right){\text{u}}_{1}^{4} \int_{0}^{1} {\dot{{\text{q}}}_{1}^{2} {\text{q}}_{1}^{3} } {\text{dx}} \hfill \\&\quad + \left[ {\upmu {\text{V}}^{2} \left(12 + \frac{0.65{\text{d}}}{\text{b}}\right) - {\text{N}}^{*} } \right]{\text{u}}_{1} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{2} } {\text{dx}} - \left[ {\upmu {\text{V}}^{2} \left(36 + 4\frac{0.65{\text{d}}}{\text{b}}\right) - 6{\text{N}}^{*} } \right]{\text{u}}_{1}^{2} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{2} } {\text{dx}} \hfill \\&\quad + \left[ {\upmu {\text{V}}^{2} \left(6 + 6\frac{0.65{\text{d}}}{\text{b}}\right) - 15{\text{N}}^{*} } \right]{\text{u}}_{1}^{3} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{3} } {\text{dx}} - \left[ {\upmu {\text{V}}^{2} \left(12 + 4\frac{0.65{\text{d}}}{\text{b}}\right) - 20{\text{N}}^{*} } \right]{\text{u}}_{1}^{4} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{4} } {\text{dx}} \hfill \\&\quad - 2\upmu {\text{V}}^{2} \frac{0.65{\text{d}}}{{\text{b}}}{\text{u}}_{1}^{5} \int_{0}^{1} {\dot{{\text{q}}}_{1}^{2} {\text{q}}_{1}^{4} } {\text{dx}} + \left(\upmu {\text{V}}^{2} \frac{0.65{\text{d}}}{\text{b}} - 15{\text{N}}^{*} \right){\text{u}}_{1}^{5} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{5} } {\text{dx}} + 6{\text{N}}^{*} {\text{u}}_{1}^{6} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{6} } {\text{dx}} \hfill \\&\quad - 6{\text{N}}_{\rm {t}}{\text{u}}_{1}^{7} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{7} } {\text{dx}} + 20\upmu \uplambda_{4} {\text{u}}_{1}^{2} \int_{0}^{1} {\dot{{\text{q}}}_{1}^{2} {\text{q}}_{1} } {\text{dx}} + 4\upmu \uplambda_{4} {\text{u}}_{1} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1} } {\text{dx}} - 4\upmu \uplambda_{4} {\text{u}}_{1}^{2} \int_{0}^{1} {\ddot{{\text{q}}}_{1} {\text{q}}_{1}^{2} } {\text{dx}} \hfill \\&\quad - {\text{V}}^{2} \left(1 + \frac{0.65{\rm{d}}}{\text{b}}\right)\int_{0}^{1} {{\text{q}}_{1} } {\text{dx}} + {\text{V}}^{2} \left(4 + 5\frac{0.65{\text{d}}}{\text{b}}\right){\text{u}}_{1} \int_{0}^{1} {{\text{q}}_{1}^{2} } {\text{dx}} - {\text{V}}^{2} \left(6 + 10\frac{0.65{\rm{d}}}{\text{b}}\right){\text{u}}_{1}^{2} \int_{0}^{1} {{\text{q}}_{1}^{3} } {\text{dx}} \hfill \\&\quad + {\text{V}}^{2} \left(4 + 10\frac{0.65{\rm{d}}}{\text{b}}\right){\text{u}}_{1}^{3} \int_{0}^{1} {{\text{q}}_{1}^{4} } {\text{dx}} - {\text{V}}^{2} \left(1 + 5\frac{0.65{\rm{d}}}{\text{b}}\right){\text{u}}_{1}^{4} \int_{0}^{1} {{\text{q}}_{1}^{5} } {\text{dx}} + {\text{V}}^{2} \frac{0.65{\rm{d}}}{\text{b}}{\rm{u}}_{1}^{5} \int_{0}^{1} {{\text{q}}_{1}^{6} } {\text{dx}} \hfill \\&\quad - \uplambda_{4} \int_{0}^{1} {{\text{q}}_{1} } {\text{dx}} + 2\uplambda_{4} {\text{u}}_{1} \int_{0}^{1} {{\text{q}}_{1}^{2} } {\text{dx}} - \uplambda_{4} {\text{u}}_{1}^{2} \int_{0}^{1} {{\text{q}}_{1}^{3} } {\text{dx}} = 0. \hfill \\ \end{aligned}$$
(22)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakolian, F., Farrokhabadi, A., SoltanRezaee, M. et al. Dynamic pull-in of thermal cantilever nanoswitches subjected to dispersion and axial forces using nonlocal elasticity theory. Microsyst Technol 25, 19–30 (2019). https://doi.org/10.1007/s00542-018-3926-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3926-y

Navigation