Skip to main content
Log in

Wafer-level micropackaging in thin film technology for RF MEMS applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this work, a thin-film packaging was developed to be used for radio-frequency microelectromechanical system configurations. The fabricated packages are suspended membranes in the multilayer SixNy/aSi/SixNy on conductive coplanar waveguides (CPWs) of different length. Several geometric parameters of the membranes, which are the length, the curvature radius at the vertices of the rectangular base, the density and the diameter of holes on the capping surface, were also varied. The mechanical properties of the suspended membranes were investigated by mechanical simulations and surface profilometry measurements as a function of the geometric parameters. RF characterization was performed to evaluate the impact of the package on the CPW performance. Finally, network analysis was carried out, allowing to clarify the origin of the RF losses measured for the fabricated microdevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bansal D, Kumar A, Kumar P, Kaur M, Rangra K (2014) Comparison of packaging technologies for RF MEMS switch. Prog Electromagn Res M 38:123–131

    Article  Google Scholar 

  • Bartolucci G, Catoni S, Giacomozzi F, Marcelli R, Margesin B, Pochesci D (2007) Realisation of distributed RF MEMS phase shifter with very low number of switches. IEEE Electron Lett 43(23):1290–1292

    Article  Google Scholar 

  • Chakraborty A, Gupta B (2017) Paradigm phase shift: RF MEMS phase shifters: an overview. IEEE Microw Mag 18(1):22–41

    Article  Google Scholar 

  • Claassen WAP, Valkenburg WGJN, Willemsen MFC, van de Wijgert WM (1985) Influence of deposition temperature, gas pressure, gas phase composition, and RF frequency on composition and mechanical stress of plasma silicon nitride layers. J Electrochem Soc 132(4):893–898

    Article  Google Scholar 

  • De Angelis G, Lucibello A, Proietti E, Marcelli R, Bartolucci G, Casini F, Farinelli P, Mannocchi G, Di Nardo S, Pochesci D, Margesin B, Giacomozzi F, Vendier O, Kim T, Vietzorreck L (2012) RF MEMS ohmic switches for matrix configurations. Intern J Microw Wireless Technol 4(4):421–433

    Article  Google Scholar 

  • El Bouyadi O, Lamy Y, Dussopt L, Simon G (2016) 3D integration and packaging of mmwave circuits and antennas: opportunities and challenges. Microw J 59(2):22–34

    Google Scholar 

  • Farinelli P, Diaferia F, Deborgies F, Di Nardo S, Espana B, Lucibello A, Marcelli R, Margesin B, Giacomozzi F, Vietzorreck L, Vitulli F (2014) Compact 12 × 12 switch matrix integrating RF MEMS switches in LTCC hermetic packages. In: 2014 44th European microwave conference (EUMC). European microwave conference, pp 199–202

  • Forehand DI, Goldsmith CL (2005) Wafer level micropackaging for RF MEMS switches. In: Proceedings of IPACK2005, ASME InterPack’05, San Francisco, California, USA, 17–22 July

  • Green DS, Dohrman CL, Demmin J, Zheng Y, Chang T-H (2015) Heterogenous integration for revolutionary microwaves circuits at DARPA. Microw J 58(6):22–38

    Google Scholar 

  • Iannacci J (2013) Practical guide to RF-MEMS. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Iannacci J (2015) RF-MEMS: an enabling technology for modern wireless systems bearing a market potential still not fully displayed. Microsyst Technol 21(10):2039–2052

    Article  Google Scholar 

  • Iannacci J, Gaddi R, Gnudi A (2010) Experimental validation of mixed electromechanical and electromagnetic modeling of RF-MEMS devices within a standard IC simulation environment. IEEE J Microelectromech Syst 19(3):526–537

    Article  Google Scholar 

  • Jain A, Palit S, Alam MA (2012) A physics-based predictive modeling framework for dielectric charging and creep in RF MEMS capacitive switches and varactors. J Microelectromech Syst 21(2):420–430

    Article  Google Scholar 

  • Koutsoureli M, Michalas L, Papandreou E, Papaioannou G (2017) Dielectric charging asymmetry in SiN films used in RF MEMS capacitive switches. IEEE Trans Dev Mat Reliab 17(1):138–145

    Article  Google Scholar 

  • Leedy KD, Strawser RE, Cortez R, Ebel JL (2007) Thin-film encapsulated RF MEMS switches. J Microelectromech Syst 16(2):304–309

    Article  Google Scholar 

  • Lucibello A, Marcelli R, Proietti E, Bartolucci G, Mulloni V, Margesin B (2014) Reliability of RF MEMS capacitive and ohmic switches for space redundancy configurations. Microsyst Technol 21(9):1903–1913

    Article  Google Scholar 

  • Lucibello A, Capoccia G, Proietti E, Marcelli R, Margesin B, Mulloni V, Giacomozzi F, Vitulli F, Scipioni M, Bartolucci G (2015) Reliable response of RF MEMS LTCC packaged switches after mechanical and thermal stress. Microsyst Technol 22:495–501

    Article  Google Scholar 

  • Lucibello A, Marcelli R, Di Paola E, Di Nardo S, Pochesci D, Croci R, Germani C (2016) RF MEMS fabrication in LTCC technology. In: Proceedings of 2016 symposium on design, test, integration and packaging of MEMS/MOEMS (DTIP), Budapest, pp 188–192

  • Lucyszyn S, Miyaguchi K, Robertson ID, Jiang HW (2008) Coupled-line RF MEMS filters for millimeter-wave applications. In: Proceedings of 2008 Asia Pacific microwave conference, Hong Kong, China, pp 2346–2349

  • Marcelli R, Papaioannu G, Catoni S, De Angelis G, Lucibello A, Proietti E, Margesin B, Giacomozzi F, Deborgies F (2009) Dielectric charging in microwave microelectromechanical ohmic series and capacitive shunt switches. J Appl Phys 105(11):114514

    Article  Google Scholar 

  • Marcelli R, Lucibello A, De Angelis G, Proietti E, Comastri D (2010) Mechanical modelling of capacitive RF MEMS shunt switches. Microsyst Technol 16(7):1057–1064

    Article  Google Scholar 

  • Marcelli R, Comastri D, Lucibello A, De Angelis G, Proietti E, Bartolucci G (2012) Dynamics of RF micro-mechanical capacitive shunt switches in coplanar waveguide configuration. In: Nazmul I (ed) Microelectromechanical systems and devices. InTech Publisher, New York, pp 193–232

    Google Scholar 

  • Mardivirin D, Pothier A, Crunteanu A, Vialle B, Blondy P (2009) Charging in dielectricless capacitive RF-MEMS switches. IEEE Trans Microw Theory Technol 57(1):231–236

    Article  Google Scholar 

  • Mercier D, Van Caekenberghe K, Rebeiz GM (2005) Miniature RF MEMS switched capacitors. In: Microwave Symposium Digest, 2005 IEEE MTT-S International, pp 745–748

  • Molinero D, Luo X, Shen C, Palego C, Hwang JCM, Goldsmith CL (2013) Long-term RF burn-in effects on dielectric charging of MEMS capacitive switches. IEEE Trans Dev Mat Reliab 13(1):310–315

    Article  Google Scholar 

  • Ouzillou M, Yu R (2014) Internet of things focus. Microw J 57(12):26–36

    Google Scholar 

  • Persano A, Tazzoli A, Farinelli P, Meneghesso G, Siciliano P, Quaranta F (2012) K-band capacitive MEMS switches on GaAs substrate: design, fabrication, and reliability. Microelectron Reliab 52:2245–2249

    Article  Google Scholar 

  • Persano A, Quaranta F, Martucci MC, Siciliano P, Cola A (2015) On the electrostatic actuation of capacitive RF MEMS switches on GaAs substrate. Sens Actuators A 232:202–207

    Article  Google Scholar 

  • Pham NP, Cherman V, Vandevelde B, Limaye P, Tutunjyan N, Jansen R, Van Hoovels N, Tezcan DS, Soussan P, Beyne E, Tilmans HAC (2011) Zero-level packaging for RF-MEMS implementing TSVs and metal bonding. In: Proceedings of the 2011 IEEE 61st electronic components and technology conference (ECTC), Lake Buena Vista, FL, USA, pp 1588–1595

  • Rebeiz G (2003) RF MEMS theory, design, and technology. Wiley-Interscience, New York

    Google Scholar 

  • Rebeiz G, Tan G-L, Hayden JS (2002) RF MEMS phase shifters: design and applications. IEEE Microw Mag 3(2):72–81

    Article  Google Scholar 

  • Shojaei-Asanjan D, Mansour RR (2017) The sky’s the limit: a switchable RF-MEMS filter design for wireless avionics intracommunication. IEEE Microw Mag 18(1):100–106

    Article  Google Scholar 

  • Stefanini R, Chatras M, Pothier A, Guines C, Blondy P (2013) High-Q 3D tunable RF MEMS filter with a constant fractional bandwidth. In: Proceedings of 2013 European microwave integrated circuit conference, Nuremberg, Germany, pp 312–315

  • Tilmans HAC, De Coster J, Helin P, Cherman V, Jourdain A, De Moor P, Vandevelde B, Pham NP, Zekry J, Witvrouw A, De Wolf I (2012) MEMS packaging and reliability: an undividable couple. Microelectron Reliab 52(9–10):2228–2234

    Article  Google Scholar 

  • Tummala RR, Rymaszewski EJ, Klopfenstein AG (1989) Microelectronics packaging handbook. Van Nostrand Reinhold, New York

    Google Scholar 

  • Zhang F, Shi L, Li C (2005) CPW transmission insertion loss on Si and SOI substrates. Microw J 48(11):138–142

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by MIUR under Project 02876 “TASMA” of the National Operative Program (PON).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romolo Marcelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Persano, A., Siciliano, P., Quaranta, F. et al. Wafer-level micropackaging in thin film technology for RF MEMS applications. Microsyst Technol 24, 575–585 (2018). https://doi.org/10.1007/s00542-017-3583-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3583-6

Navigation