Skip to main content
Log in

Flexible piezoelectric micromachined ultrasonic transducer (pMUT) for application in brain stimulation

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

We propose a new flexible piezoelectric micromachined ultrasonic transducer (pMUT) array integrated on flexible polydimethylsiloxane (PDMS) that can be used in studying brain stimulation by ultrasound. To achieve the technical demands of a high sound pressure level and flexibility, a diaphragm-type piezoelectric ultrasound transducer array was manufactured with 55 μm-thick bulk lead zirconate titanate (PZT) that was thinned after bonding with a silicon wafer. The ultrasound transducer array was then strongly bonded onto a PDMS substrate using an oxygen-plasma treatment followed by precise dicing with a fixed pitch to achieve flexibility. The radius of curvature was smaller than 5 mm, which is sufficient for attachment to the surface of a mouse brain. After a thinning process for the PZT layer, we observed that the PZT layer still maintained a high ferroelectric property. The measured remnant polarization (Pr) and coercive field (Ec) were 28.26 μC/cm2 and 79 kV/cm, respectively. The resonant frequencies of fabricated pMUT elements with different membrane sizes of 700, 800, 900, 1200 μm in diameter were measured to be 694.4, 565.4, 430.8, and 289.3 kHz, respectively. By measuring the ultrasound output pressure, a pMUT showed a sound intensity (Isppa) of 44 mW/cm2 at 80 V, which is high enough for low-intensity ultrasound brain stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aktakka EE, Peterson RL, Najafi K (2011) Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting. IEEE Transducers Proc 1649–1652

  • Bystritsky A et al (2011) A review of low-intensity focused ultrasound pulsation. Brain Stimul 4:125–136. doi:10.1016/j.brs.2011.03.007

    Article  Google Scholar 

  • Cai Changlong, Huang Jing, Zhai Yujia, Ma Weihong, Liu Weiguo (2010) Patterning of PZT thin films. Chin Opt Lett 8:210–212. doi:10.3788/col201008s1.0210

    Google Scholar 

  • Che L, Halvorsen E, Chen X (2011) An optimized one-step wet etching process of Pb (Zr 0.52 Ti 0.48) O3 thin films for microelectromechanical system applications. J Micromech Microeng 21:105008. doi:10.1088/0960-1317/21/10/105008

  • Choi HS, Ding JL, Bandyopadhyay A, Anderson MJ, Bose S (2008) Characterization and modeling of a piezoelectric micromachined ultrasonic transducer with a very large length/width aspect ratio. J Micromech Microeng 18:025037. doi:10.1088/0960-1317/18/2/025037

    Article  Google Scholar 

  • Eccardt PC, Niederer K (2000) Micromachined ultrasound transducers with improved coupling factors from a CMOS compatible process. Ultrasonics 38:774–780

    Article  Google Scholar 

  • Gk Perçin, Atalar A, Levent Degertekin F, Khuri-Yakub BT (1998) Micromachined two-dimensional array piezoelectrically actuated transducers. Appl Phys Lett 72:1397. doi:10.1063/1.121067

    Article  Google Scholar 

  • Hu Y, Zhong W, Wan JMF, Yu ACH (2013) Ultrasound can modulate neuronal development: impact on neurite growth and cell body morphology ultrasound. Med Biol 39:915–925. doi:10.1016/j.ultrasmedbio.2012.12.003

    Google Scholar 

  • Jung J, Kim S, Lee W, Choi H (2013) Fabrication of a two-dimensional piezoelectric micromachined ultrasonic transducer array using a top-crossover-to-bottom structure and metal bridge connections. J Micromech Microeng 23:125037. doi:10.1088/0960-1317/23/12/125037

    Article  Google Scholar 

  • King RL, Brown JR, Newsome WT, Pauly KB (2013) Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med Biol 39:312–331. doi:10.1016/j.ultrasmedbio.2012.09.009

    Article  Google Scholar 

  • Kinsler LE, Frey AR (1950) Fundamentals of acoustics. Wiley, New York

  • Kochy M, Evans AGR, Brunnschweiler A (1998) The dynamic micropump driven with a screen printed PZT actuator. J Micromech Microeng 8:119–122

    Article  Google Scholar 

  • Ladabaum I, Jin X, Soh HT, Atalar A, Khuri-Yakub BT (1998) Surface micromachined capacitive ultrasonic transducers. IEEE Trans Ultrason Ferroelectr Freq Control 45:679–690

    Article  Google Scholar 

  • Mehic E, Xu JM, Caler CJ, Coulson NK, Moritz CT, Mourad PD (2014) Increased anatomical specificity of neuromodulation via modulated focused ultrasound. PLoS One 9:e86939. doi:10.1371/journal.pone.0086939.g001

    Article  Google Scholar 

  • Nyborg WL (2001) Biological effects of ultrasound: development of safety guidelines. Part 2: general review. Ultrasound Med Biol 27:301–333

    Article  Google Scholar 

  • Ressler KJ, Mayberg HS (2007) Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci 10:1116–1124. doi:10.1038/nn1944

    Article  Google Scholar 

  • Szobota S et al (2007) Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54:535–545. doi:10.1016/j.neuron.2007.05.010

    Article  Google Scholar 

  • Tufail Y et al (2010) Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 66:681–694. doi:10.1016/j.neuron.2010.05.008

    Article  Google Scholar 

  • Tufail Y, Yoshihiro A, Pati S, Li MM, Tyler WJ (2011) Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat Protoc 6:1453–1470. doi:10.1038/nprot.2011.371

    Article  Google Scholar 

  • Wagner T, Valero-Cabre A, Pascual-Leone A (2007) Noninvasive human brain stimulation. Annu Rev Biomed Eng 9:527–565. doi:10.1146/annurev.bioeng.9.061206.133100

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the KIST Institutional Program (Project No. 2E25590).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Song Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JH., Cho, IJ., Ko, K. et al. Flexible piezoelectric micromachined ultrasonic transducer (pMUT) for application in brain stimulation. Microsyst Technol 23, 2321–2328 (2017). https://doi.org/10.1007/s00542-016-2912-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-2912-5

Keywords

Navigation