Skip to main content
Log in

Filtration of aerosol particles by cylindrical fibers within a parallel and staggered array

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The World Health Organization (WHO) in 2013 reported that more than seven million unexpected losses every year are credited to air contamination. Because of incredible adaptability and expense viability of fibrous filters, they are broadly used for removing particulates from gasses. The influence of appropriate parameters, e.g., the fiber arrangement, solid volume fraction (SVF or α), fluid flow face velocity (mean inlet velocity), and filter thickness (I x ), on pressure drop and deposition efficiency are researched. Furthermore, to study the effects of variation of the laminar flow regime and fiber’s cross-sectional shape on the deposition of particles, only a single square fiber has been placed in a channel. By means of finite volume method (FVM), the 2-D motion of 100–1000 nm particles was investigated numerically. The Lagrangian method has been employed and the Saffman’s lift, Drag, and Brownian forces have been considered to affect this motion. Contribution of increasing the Reynolds number to filtration performance increased with smaller fine aerosols to a level of 59.72 %. However, for over 500 nm, the Re = 100 has more efficient results up to 26.97 %. Remarkably, the single square fiber in Re = 200 regime performs similarly to the optimum choice of multi-fibrous filters. It was portrayed the parallel circular multi-fibrous filter with a ratio of horizontal-to-vertical distances between fibers, l/h = 1.143; α = 0.687, I x  = 116.572, and h/d f  = 1.0 is the most efficient filter’s structure. The increase in the ratio of vertical distances between fibers-to-fiber’s diameter (h/d f ) and decrease in SVF or α, results in a drastically decrement of the filtration performance of both parallel and staggered structures. The obtained results have been validated with previous research findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agrawal A, Djenidi L, Antonia RA (2006) Investigation of flow around a pair of side-by-side square cylinders using the Lattice Boltzmann method. Comput Fluids 35:1093–1107

    Article  MATH  Google Scholar 

  • Ansari V, Soltani Goharrizi A, Jafari S, Abolpour B (2014) Numerical study of solid particles motion and deposition in a filter with regular and irregular arrangement of blocks with using lattice boltzmann method. Comput Fluids. doi:10.1016/j.compfluid.2014.11.022

    Google Scholar 

  • Babaie Rabiee M, Talebi S, Abouali O, Izadpanah E (2015) Investigation of the characteristics of particulate flows through fibrous filters using the lattice Boltzmann method. Particuology. doi:10.1016/j.partic.2014.11.010

    Google Scholar 

  • Brandon DJ, Aggarwal SK (2001) A numerical investigation of particle deposition on a square cylinder placed in a channel flow. Aerosol Sci Tech 34:340–352

    Article  Google Scholar 

  • Brown RC (1993) Air filtration: an integrated approach to the theory and applications of fibrous filters. Pergamon Press, New York

    Google Scholar 

  • Chen S, Cheung CS, Chan CK, Zhu C (2002) Numerical simulation of aerosol collection in filters with staggered parallel rectangular fibers. Comput Mech 28:152–161

    Article  MATH  Google Scholar 

  • Crowe CT, Schwarzkopf JD, Sommerfeld M, Tsuji Y (1998) Multiphase flows with droplets and particles. CRC Press, USA

    Google Scholar 

  • Davies CN, Peetz CV (1955) Impingement of particles on a transverse cylinder. Proc Roy Soc 234:269–295

    Article  MathSciNet  Google Scholar 

  • Fotovati S, Vahedi Tafreshi H, Pourdeyhimi B (2010) Influence of fiber orientation distribution on performance of aerosol filtration media. Chem Eng Sci 65(18):5285–5293

    Article  Google Scholar 

  • Franke R, Rodi W, Schönung B (1990) Numerical calculation of laminar vortex shedding flow past cylinders. J Wind Eng Ind Aerod 35:237–257

    Article  Google Scholar 

  • Friedlander SK (1977) Smoke, dust and haze: fundamentals of aerosol behavior. Wiley, New York

    Google Scholar 

  • Fuchs NA (1964) The mechanics of aerosol. Pergamon Press, New York

    Google Scholar 

  • Griffin FO, Meisen A (1973) Impaction of spherical particles on cylinders at moderate Reynolds numbers. Chem Eng Sci 28:2155–2164

    Article  Google Scholar 

  • Hinds WC (1999) Aerosol technology: Properties, behavior, and measurement of airborne particles, 2nd edn. Wiley, New York

    Google Scholar 

  • Hosseini SA, Vahedi Tafreshi H (2010a) 3-D simulation of particle filtration in electrospun nanofibrous filter. Powder Technol 201:153–160

    Article  Google Scholar 

  • Hosseini SA, Vahedi Tafreshi H (2010b) Modeling permeability of 3-D nanofiber media in slip flow regime. Chem Eng Sci 65:2249–2254

    Article  Google Scholar 

  • Hosseini SA, Tafreshi HV (2010) Modeling particle filtration in disordered 2-D domains: a comparison with cell models. Sep Purif Technol 74:160–169

    Article  Google Scholar 

  • Hosseini SA, Vahedi Tafreshi H (2011) On the importance of fibers cross-sectional shape for air filters operating in the slip flow regime. Powder Technol 212:425–431

    Article  Google Scholar 

  • Hosseini SA, Vahedi Tafreshi H (2012) Modeling particle-loaded single fiber efficiency and fiber drag using ANSYS–Fluent CFD code. Comput Fluids 66:157–166

    Article  Google Scholar 

  • Jafari S, Salmanzadeh M, Rahnama M, Ahmadi G (2010) Investigation of particle dispersion and deposition in a channel with a square cylinder obstruction using the lattice Boltzmann method. J Aerosol Sci 41:198–206

    Article  Google Scholar 

  • Karniadakis G, Beskok A (2002) Micro flows: fundamentals and simulation. Springer, New York

    MATH  Google Scholar 

  • Kirsch VA (2007) Stokes flow in model fibrous filters. Sep Purif Technol 58(2):288–294

    Article  Google Scholar 

  • Kouropoulos GP (2014) The effect of the Reynolds number of air flow to the particle collection efficiency of a fibrous filter medium with cylindrical section. J Urban Environ Eng 8:3–10

    Article  Google Scholar 

  • Lantermann U, Hänel D (2007) Particle Monte Carlo and lattice-Boltzmann methods for simulations of gas–particle flows. Comput Fluids 36(2):407–422

    Article  MATH  Google Scholar 

  • Li A, Ahmadi G (1992) Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Sci Technol 16(4):209–226

    Article  Google Scholar 

  • Li A, Ahmadi G (1993) Aerosol particle deposition with electrostatic attraction in a turbulent channel flow. J Colloid Interface Sci 158(2):476–482

    Article  Google Scholar 

  • Li A, Ahmadi G, Bayer RG, Gaynes MA (1994) Aerosol particle deposition in an obstructed turbulent duct flow. J Aerosol Sci 25:91–112

    Article  Google Scholar 

  • Liu ZG, Wang PK (1996) Numerical investigation of viscous flow fields around multi-fiber filters. Aerosol Sci Technol 25(4):375–391

    Article  Google Scholar 

  • Liu ZG, Wang PK (1997) Pressure drop and interception efficiency of multi fiber filters. Aerosol Sci Technol 26(4):313–325

    Article  Google Scholar 

  • Maze B, Tafreshi HV, Wang Q, Pourdeyhimi B (2007) A simulation of unsteady-state filtration via nanofiber media at reduced operating pressures. J Aerosol Sci 38:550–571

    Article  Google Scholar 

  • Maze B, Tafreshi HV, Pourdeyhimi B (2008) Case Studies of Air Filtration at Microscales: Micro- and Nanofiber Media. J Eng Fiber Fabric 3(2):7–12

  • Munson BR, Okiishi TH, Huebsch WW, Rothmayer AP (2013) Fundamentals of fluid mechanics, 7th edn. Wiley, New York

    Google Scholar 

  • Nigro NM, Paz RR, Filippini G, Storti MA. Internal Report: Numerical predictions of several configurations of circular cylinders. CIMEC, CONICET—INTEC—U.N.L, Santa Fe, Argentina

  • Poon WWS, Liu BYH (1999) Interception and impaction collection efficiency for fibrous media in moderate Reynolds number regime. Presented at Fall Topical Conference of the American Filtration and Separations Society. Minneapolis, 20–21 October 1999, 135–141

  • Przekop R, Moskal A, Gradon L (2003) Lattice-Boltzmann approach for description of the structure of deposited particulate matter in fibrous filters. J Aerosol Sci 34:133–147

    Article  Google Scholar 

  • Rao N, Faghri M (1988) Computer modeling of aerosol filtration by fibrous filters. Aerosol Sci Technol 8(2):133–156

    Article  Google Scholar 

  • Saffman PGT (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22(02):385–400

    Article  MATH  Google Scholar 

  • Saleh AM, Hosseini SA, Vahedi Tafreshi H, Pourdeyhimi B (2013) 3-D microscale simulation of dust-loading in thin flat-sheet filters: a comparison with 1-D macroscale simulations. Chem Eng Sci 99:284–291

    Article  Google Scholar 

  • Spurny KR (1998) Advances in aerosol filtration. CRC Press, New York

    Google Scholar 

  • Succi S (2002) Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis. Phys Rev Lett 89(6):064502

    Article  Google Scholar 

  • Suneja SK, Lee CH (1974) Aerosol filtration by fibrous filters at intermediate Reynolds numbers (<100). Atmos Env 8:1081–1094

    Article  Google Scholar 

  • Surmas R, Santos D, Luiso E, Philip P (2004) Lattice Boltzmann simulation of the flow interference in bluff body wakes. Future gen comp sys 20:951–958

    Article  Google Scholar 

  • Tien C (2012) Principles of filtration. Elsevier, Amsterdam

    Google Scholar 

  • Vahedi Tafreshi H, Rahman MSA, Jaganathan S, Wang Q, Pourdeyhimi B (2009) Analytical expressions for predicting permeability of bimodal fibrous porous media. Chem Eng Sci 64(6):1154–1159

    Article  Google Scholar 

  • Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics, 2nd edn. Prentice Hall, England

    Google Scholar 

  • Vincent JH, Humphries W (1978) The collection of airborne dusts by bluff bodies. Chem Eng Sci 33:1147–1155

    Article  Google Scholar 

  • Wang Q, Maze B, Vahedi Tafreshi H, Pourdeyhimi B (2006) A case study of simulating submicron aerosol filtration via lightweight spun-bonded filter media. Chem Eng Sci 61:4871–4883

    Article  Google Scholar 

  • Xu B, Wu Y, Cui P (2014) Semi-analytical and computational investigation of different dust loading structures affecting the performance of a fibrous air filter. Particuology 13:60–65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Moosavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banihashemi Tehrani, S., Moosavi, A. & Sadrhosseini, H. Filtration of aerosol particles by cylindrical fibers within a parallel and staggered array. Microsyst Technol 22, 965–977 (2016). https://doi.org/10.1007/s00542-015-2674-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2674-5

Keywords

Navigation